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« Knowledge of user attributes can benefit applications.

= Customization
« Managing Resources
= Security

Approach

= Infer unknown user attributes from information
contained in network logs.

= Train Long Short Term Memory Network (LSTM) on
sequences of user actions.

= Predict user attributes online.

Background

Cert Insider Threat Dataset

= oynthetic data generated with user models.

= 4000 users, 516 days, 135 million events total.

« Email, web, logon, file and device usage events.
« Accompanying user meta data:
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Figure: Distribution of roles by user and line.
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Model

Online Training and Prediction

o Aggregate user features from logging sources.
® Organize features into sequences of user-day vectors.
© Train LSTM classifier concurrently on user sequences.

- x;': User u’s feature vector for day ¢.
- p;: Distribution of roles for user w for day ¢.
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Feature Extraction:
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Aggregate events
over user days
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Dispatcher: Buffer & Organize event vectors into user sequences
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LSTM Classifier Equations
B Model parameters
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Experimental Setup

« Simulate online scenario for 90 days data.
= 80/10/10 train/dev/test split over users.
= Cross-entropy objective.

« Random hyperparameter search.

Predicting Roles from Computer Logs
using Recurrent Neural Networks

Aaron Tuor, Sam Kaplan, Brian Hutchinson
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Results and Analysis
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Figure: Cross-entropy as a function of time.

» Performance starts out poor but steadily improves.
« Predictions improve until day 40-50.

= Achieve 38% accuracy after 90 days training.

= 11% baseline to predict majority class role.
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Figure: Accuracy as a function of time.
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Figure: F-score as a function of log lines.

« Classifiers tend to do better with many examples.
« Expect linear correlation between f-score and log lines.
« Overperforming classes may show distinctive behavior.

Conclusions and Future Work

= 38% accuracy on 33-way classification.

« Method trivially generalizes to other attributes.
« Address class imbalance by random re-sampling.
« Evaluate on real world data sets.



