Modeling the Semantics of "Tall"

A probabilistic approach

"Tall" is a gradable adjective which is vague and context dependent.

 Vagueness is a feature belonging to some linguistic items which Is distinguished from, ambiguity, generality, and indefiniteness.

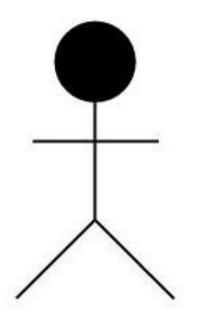
Williamson: ...'vague is vague'. Its everyday meaning is so diffuse that it can be the object of only the most desultory investigation

✤ A borderline case is a case where it is uncertain whether or not a word applies. A borderline borderline case is a case where it is uncertain whether or not it is uncertain whether a word applies.

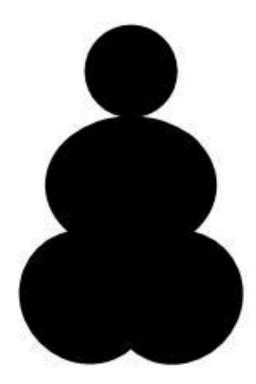
Tolerance: There exists a degree of change on some relevant scale too small to make any seeming difference in the application of the term.

✤ A vague term is one whose application is subject to a principal of *Tolerance* And for which there are *borderline cases*, borderline borderline cases, etc.

Is this stick figure tall?



Is this stick figure fat?



££ £ £ £ £ £ £ £ £

t i t t i t t

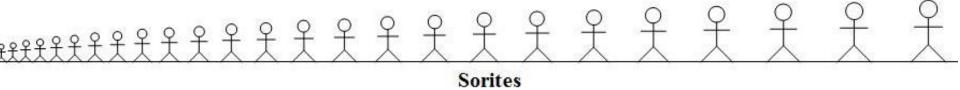
我我我我我我我我我

t t t t t i

Issues With Vagueness

The conditions under which an utterance is true are considered to be a fundamental component of the semantics of language.

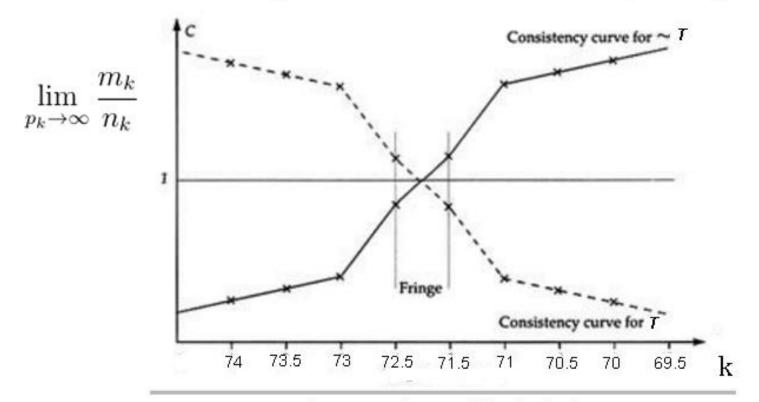
Vagueness presents the issue of how to represent the truth conditions for an utterance which contains predicates of uncertain application.



A 7 ft. person is tall. If a 7 ft. person is tall, a 6'11" person is tall. If a 6'11" person is tall, a 6'10" person is tall.

```
A 4 ft. person is tall.
```

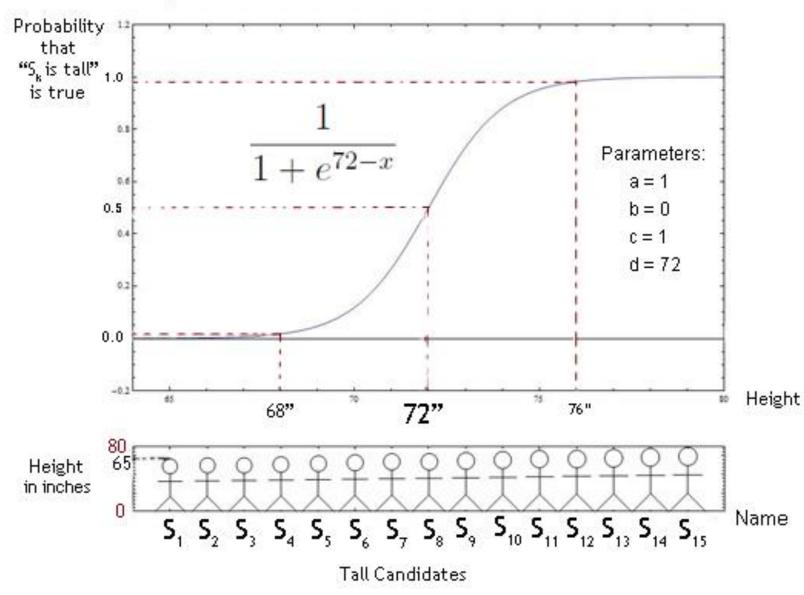
Max Black: Vagueness as Consistency of application



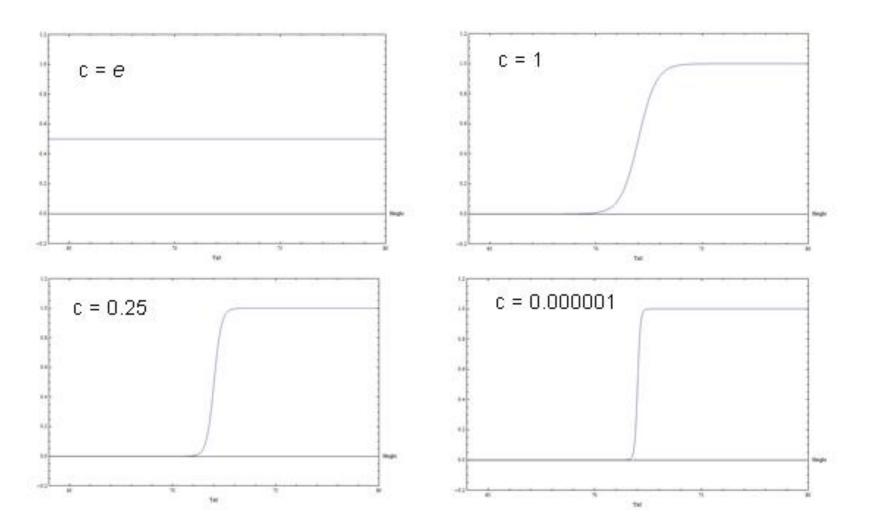
For a American male x of k" height, $Dx_kT = A$ Person judged x_k tall. $Dx_k \sim T = A$ Person judged x_k not tall. $m_k =$ Number of Dx_kT , $n_k =$ number of $Dx_k \sim T$ $p_k = m_k + n_k$

Discrete-ish perception of events which vary along a continuum





Sigmoid Semantics for "tall" in the Context of American Males



General Sigmoid Function to Model Semantics of Vagueness and Context Dependency

$$\frac{a-b}{1+(\frac{e}{c})^{d-x}}+b$$

Set a = 1, b = 0, and d the Symmetry point in the middle of the range of indeterminate application.

$$\frac{1}{4} (a - b) \left(1 + Log\left[\frac{1}{c}\right]\right)$$

Hypothesis:

Range of indeterminate application is related to the distribution of the universe of objects along a scale in the domain of application given the context.

"Tall" in the context of American males: Set d = 1 standard deviation above mean.

"Tall" in the context of American Male

 $P(T(S_k)) = Probability that "S_k is tall" is true.$

Name	Height	P(T(Sk))
s ₀	5 ft.4 in.	0.00033535
s ₁	5 ft. 5 in.	0.000911051
s ₂	5 ft.6 in.	0.00247262
^S 3	5 ft.7 in.	0.00669285
s ₄	5 ft. 8 in.	0.0179862
s ₅	5 ft.9 in.	0.0474259
5 ₆	5 ft. 10 in.	0.119203
s ₇	5 ft. 11 in.	0.268941
S ₈	6 ft.	0.5
S ₉	6 ft. 1 in.	0.731059
^S 10	6 ft. 2 in.	0.880797
s ₁₁	6 ft. 3 in.	0.952574
s ₁₂	6 ft.4 in.	0.982014
s ₁₃	6 ft. 5 in.	0.993307
s ₁₄	6 ft. 6 in.	0.997527
S ₁₅	6 ft. 7 in.	0.999089
S ₁₆	6 ft.8 in.	0.999665

What information do we get when someone says "John is tall." ? We can interpret the sigmoid function as a cumulative distribution function.

 $P(John's height \le x)$

 $\frac{d}{dx}\left(\frac{1}{1+e^{72-x}}\right) = \frac{e^{72+x}}{(e^{72}+e^x)^2} \qquad \int_{-\infty}^{\infty} \frac{e^{72+x}}{(e^{72}+e^x)^2} \,\mathrm{d}x = 1$

Ernest Adam's Probability Logic (1998)

Adam's phrases Kolgomorov's axioms in terms of propositional logic: Let ϕ and ψ be propositions. Then:

(1) 0 ≤ P(φ) ≤ 1.
(2) If φ is logically true then P(φ) = 1.
1) If φ logically implies ψ then P(φ) ≤ P(ψ).
2) If φ and ψ are logically inconsistent then P(φ & ψ) = P(φ) + P(ψ)

The uncertainty of a proposition ϕ , is written U(ϕ). (5) U(ϕ) = 1 - P(ϕ) = P($\sim \phi$).

From these axioms and classical first order logic follows a generalization of classical validity:

(6) The uncertainty of the conclusion of a valid inference cannot exceed the sum of the uncertainties of the premises.

A Short Proof

We will assume that for any propositions ϕ , and ψ , P($\phi \rightarrow \psi$) = P($\psi \mid \phi$). Further it is fair to assume that P(T(S_k)) \leq P(T(S_{k+1})). Also,

(i) P (T(
$$S_{k+1}$$
) |T(S_k)) = 1.

By the definition of conditional probability,

(ii) P(T(
$$S_{k+1}$$
) & T(S_k)) = P(T(S_k)) P(T(S_{k+1}) |T(S_k)).
(iii) P(T(S_k) & T(S_{k+1})) = P(T(S_{k+1})) P(T(S_k) |T(S_{k+1}))
By (i) and (ii),

(iv) P(T(
$$S_{k+1}$$
) & T(S_k)) = P(T(S_k)) * 1 = P(T(S_k))

Substituting the right side of (iv) into the left side of (iii),

(v) P (T(
$$S_k$$
)) = P (T(S_{k+1})) P (T(S_k) | T(S_{k+1})).

Dividing both sides of (v) by , P (T(S_{k+1})),

(vi) P (T(S_k) | T(S_{k+1})) =
$$\frac{P(T(Sk))}{P(T(Sk_{+1}))}$$
.

Two Challenges: Composition and Generalization

- What about predicates like "fat" or "red" which don't vary along a single immediately apparent continuum?
- How would this sort of lexical semantics work with composition?
- We can imagine how sets interact but how are the sigmoid functions of two vague predicates going to interact?
- Idea: "Very tall" shifts the function one standard deviation forward.
 "Sort of tall" shifts the function one standard deviation backward.

