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1 Notation and Definitions

Sets are denoted with capital script letters.
Matrices are denoted with capital letters.
The entry of a matrix A at row i and column j is denoted Aij

For an m× n matrix A the i-th row is denoted Ai:︸︷︷︸
1×n

and the j-th column is denoted A:j︸︷︷︸
m×1

.

To eliminate parentheses, subscripts have precedence over all operators, e.g.,
AT

i:︸︷︷︸
n×1

= (Ai:)
T︸ ︷︷ ︸

n×1

, for an m× n matrix A.

A ◦B is the elementwise product (Hadamard product) of A and B, i.e.,

(A ◦B)ij = AijBij.

‖A‖F =
√∑

i

∑
j

A2
ij is the Frobenius norm of A.

Special ranges of indexing letters are reserved for distinguishing between users, items, words,
and latent factors:

Entity Items Factors Users Words
Indices h, i, j p, q, r u, v, w x, y, z

Definitions

R denotes the user-item utility matrix or simply the utility matrix where

Rui =

{
User u’s rating of item i for observed ratings,

0 for unknown ratings.

K = {(u, i) | Rui is known}.
Ku = {i | Rui is known }.
Assuming R is m× n, Ω is an m× n matrix such that:

Ωui =

{
1 if (u, i) ∈ K
0 otherwise

2 MF Models

The basic idea behind matrix factorization models is that the information encoded for items
in the columns of the utility matrix, and for users in the rows of the utility matrix is not
exactly independent. Users and items should be related in some way that may be obscured
by the noisiness and sparsity of the data. That is, if we did happen to have ratings for all
the users and all the items in the dataset we should find either the rank of the utility matrix
was significantly lower, perhaps orders of magnitude, lower than either m or n, or else given
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a singular value decomposition of the complete utility matrix, R = UΣV T, by zeroing out
the k last diagonal entries of Σ we are left with a close approximation of the original ratings
matrix.

3 Latent Factors

Assume R︸︷︷︸
m×n

can be factored into two matrices, U︸︷︷︸
m×k

and PT︸︷︷︸
k×n

, so that U︸︷︷︸
m×k

PT︸︷︷︸
k×n

≈ R︸︷︷︸
m×n

.

One can imagine the eigenvalues contained in the matrix Σ of the SVD of R as having been
arbitrarily absorbed into either U or P T or both. Uvr is interpreted as user v’s level of
appreciation of the latent or hidden factor r. Pir is interpreted as item i’s level of possession
of latent factor r. Uv: is called the user profile vector as it contains user v’s preferences
for the k latent factors. Pi: is called the item profile vector as it contains item i’s level of
possession of latent factors. User-item interaction between user v and item i is modeled by
Uv:︸︷︷︸
1×k

PT
i:︸︷︷︸

k×1

.

A natural loss function for training this model is:

L(U, P ) =
1

2

∑
(v,i)∈K

(Rvi − Uv:P
T
i: )

2 =
1

2
‖Ω ◦ (R− UPT)‖2F (3.1)

[4]

This model is often referred to in the literature as SVD.
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To derive the gradients with respect to matrices U and PT we’ll use the gradient identities
derived in section 8.

By (8.17) we have that:

∇UL = ∇U
1

2
‖Ω◦(R−UPT)‖2F = −2∗ 1

2

(
Ω◦Ω◦

(
R−UPT

))
P = −

(
Ω◦
(
R−UPT

))
P (3.2)

Notice that,

L(U, P ) =
1

2
‖Ω ◦ (R− UPT)‖2F =

1

2
‖ΩT ◦ (RT − PUT)‖2F . (3.3)

So,

∇PL = −
(

ΩT ◦
(
RT − PUT

))
U. (3.4)

3.1 L2 regularization

With so many parameters (k ∗m+ k ∗n) this model may be prone to over fitting. Let λ1 be
a hyperparameter controlling the amount of regularization. A reasonable loss function for
this model with L2 regularization is:

L2(U, P ) =
1

2
‖Ω ◦ (R− UPT)‖2F +

1

2
λ1(‖U‖2F + ‖P‖2F ) (3.5)

[4]

The gradients:

∇UL2 = ∇U

(1

2
‖Ω ◦ (R− UPT)‖2F +

1

2
λ1(‖U‖2F + ‖P‖2F )

)
=

∇UL+∇U
1

2
λ1(‖U‖2F + ‖P‖2F ) = ∇UL+

1

2
λ1∇U‖U‖2F = ∇UL+ λ1U.

(3.6)

By a similar derivation,
∇PL2 = ∇PL+ λ1P. (3.7)

3.2 Baseline Predictors

From Koren and Bell. Advances in Collaborative Filtering [4]:

CF models try to capture the interactions between users and items that produce
the different rating values. However, much of the observed rating values are due
to effects associated with either users or items, independently of their interaction.
A principal example is that typical CF data exhibit large user and item biases
i.e., systematic tendencies for some users to give higher ratings than others, and
for some items to receive higher ratings than others. We will encapsulate those
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effects, which do not involve user-item interaction, within the baseline predictors
(also known as biases). Because these predictors tend to capture much of the
observed signal, it is vital to model them accurately. Such modeling enables
isolating the part of the signal that truly represents user-item interaction, and
subjecting it to more appropriate user preference models. Denote by µ the overall
average rating. A baseline prediction for an unknown rating Rui is denoted by
bui and accounts for the user and item effects:

bui = µ+ au + bi (3.8)

The parameters au and bi indicate the observed deviations of user u and item i,
respectively, from the average.

Incorporating user and item biases into the MF model gives the a rating prediction of:

Rvi ≈ µ+ av + bi + Uv:P
T
i: . (3.9)

The corresponding loss function with L2 regularization is [4]:

L3 =
1

2

∑
(v,i)∈K

(Rvi − (µ+ av + bi + Uv:Pi:)
T)2 +

1

2
λ1(‖Uv:‖2 + ‖Pi:‖2 + a2u + b2i ). (3.10)

L3 can be written in matrix form in terms of the matrices R̂, Û , and P̂ where:

R̂vi = Rvi − µ, Û =

U11 . . . U1k a1 1
...

. . .
...

...
...

Um1 . . . Umk am 1

 , and P̂T =


P11 . . . Pn1

...
. . .

...
P1k . . . Pnk

1 . . . 1
b1 . . . bn


so that

R̂vi ≈ Û P̂T. (3.11)

Since the parameter matrices have now been infiltrated by constants our gradient formula
doesn’t exactly work anymore. This can be resolved by defining masks, ΩX , where:

ΩXij =

{
0 if Xij is a constant,

1 otherwise.

So the loss and associated gradients are now:

L3 =
1

2
‖Ω ◦ (R̂− Û P̂T)‖2F +

1

2
λ1(‖Û‖2F + ‖P̂‖2F ) (3.12)

∇ŨL3 = −ΩÛ ◦
((

Ω ◦ (R̂− Û P̂T)
)
P̂ + λ1Û

)
(3.13)
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∇P̃L3 = −ΩP̂ ◦
((

Ω ◦ (R̂− Û P̂T)
)
P̂ + λ1P̂

)
(3.14)

Koren and Bell report evaluating this model on the Netflix data with a learning rate of 0.005
and regularization weight of 0.02.

Koren and Bell remark that better results are obtained by tuning separate regularization
weights for each type of parameter (user bias, item bias, user profiles, and item profiles).
This can be written in matrix form in terms of two weight matrices:

Λ1 =

λ1 . . . λ1 λ3 0
...

. . .
...

...
...

λ1 . . . λ1 λ3 0


︸ ︷︷ ︸

m×(k+2)

, and Λ2 =

λ2 . . . λ2 0 λ4
...

. . .
...

...
...

λ2 . . . λ2 0 λ4


︸ ︷︷ ︸

n×(k+2)

where λ21 is the regularization weight for user profiles, λ23 is the regularization weight for user
bias, λ22 is the regularization weight for item profiles, and λ24 is the regularization weight for
item bias. The loss function with separate regularization weights is now:

L4 =
1

2

∑
(v,i)∈K

(Rvi − (µ+ av + bi + Uv:Pi:)
T)2 +

1

2
(λ21‖Uv:‖2 + λ22‖Pi:‖2 + λ23a

2
u + λ24b

2
i ) (3.15)

=
1

2
‖Ω ◦ (R̂− Û P̂T)‖2F +

1

2
(‖Λ1 ◦ Û‖2F + ‖Λ2 ◦ P̂‖2F ) (3.16)

⇒ ∇ŨL4 = −
(
Ω ◦ (R̂− Û P̂T)

)
P̂ + Λ1 ◦ Λ1 ◦ Û (3.17)

∇P̃L4 = −
(
Ω ◦ (R̂− Û P̂T)

)
P̂ + Λ2 ◦ Λ2 ◦ P̂ . (3.18)

Koren and Bell [4] also suggest that applying different learning rates for gradient descent on
the different types of parameters will improve prediction accuracy. A scheme for implement-
ing this training method is outlined in [? ].

4 SVD++ [4]

SVD++ incorporates implicit feedback into the MF model. For r sources of implicit feedback
and k latent factors, the prediction rule for SVD++ is:

Rvi ≈ µ+ av + bi +
(
Uv:︸︷︷︸
1×k

+|N 1(v)|−
1
2

∑
j∈N 1(v)

y
(1)
j︸︷︷︸

1×k

+...+ |N r(v)|−
1
2

∑
j∈N r(v)

y
(r)
j︸︷︷︸

1×k

)
PT
i: (4.1)

Here N p(v) is the set of items for which user v has given implicit feedback of type p. For each
item j, yj is a row vector with an entry for each latent factor. Koren and Bell mention that
“a significant signal can be captured by accounting for which items users rate, regardless of
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their rating value”. If we let R(v) be the set of items which a user has rated then an SVD++
prediction that incorporates the implicit feedback of which items a user rates is:

Rvi ≈ µ+ av + bi +
(
Uv: + |R(v)|−

1
2

∑
j∈R(v)

yj

)
PT
i: (4.2)

To express this prediction rule and associated loss function in matrix form define the matri-
ces:

Ŷ =

y1 0 0
...

...
...

yn 0 0


︸ ︷︷ ︸

k+2

C =

|R(1)|− 1
2 0 0

...
. . .

...

0 0 |R(m)|− 1
2


m

We now have the following equality:

Rvi−
(
µ+av+bi+

(
Uv:+|R(v)|−

1
2

∑
j∈R(v)

yj

)
PT
i:

)
=
(
R̂︸︷︷︸

m×n

−
(

Û︸︷︷︸
m×k+2

+ C︸︷︷︸
m×m

Ω︸︷︷︸
m×n

Ŷ︸︷︷︸
n×k+2

)
P̂T︸︷︷︸

k+2×n

)
vi

(4.3)
So the loss function without regularization is (to implement without bias replace all matrices
with tildes by their unadorned counterparts):

L5 = (i)
1

2
‖Ω ◦

(
R̂−

(
Û + CΩŶ

)
P̂T
)
‖2F = (ii)

1

2
‖Ω ◦

((
R̂− CΩŶ P̂T

)
− Û P̂T

)
‖2F =

(iii)
1

2
‖ΩT ◦

((
R̂T − P̂

(
ÛT + Ŷ TΩTCT

))
‖2F = (iv)

1

2
‖Ω ◦

((
R̂− Û P̂T

)
− CΩŶ P̂T

)
‖2F
(4.4)

From (8.17) and (ii):

∇ÛL5 = −ΩÛ ◦
((

Ω ◦
((
R̂− CΩŶ P̂T

)
− Û P̂T

))
P̂
)

(4.5)

From (8.17) and (iii):

∇P̂L5 = −ΩP̂ ◦
((

ΩT ◦
(
R̂T − P̂

(
ÛT + Ŷ TΩTCT

)))(
Û + CΩŶ

))
(4.6)

From (8.1) and (iv):

∇ŶL5 = −ΩÛ ◦
(

ΩTCT
(

Ω ◦
((
R̂− Û P̂T

)
− CΩŶ P̂T

))
P
)

(4.7)

5 Joint Factorization (JF) Models

Joint Factorization Models are another method used to incorporate data besides ratings
into a MF approach. The idea is to tie a matrix factorization involving ratings to another
factorization involving some other form of data. One source of such data which has been
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exploited using JF models is text associated with items. This sort of approach has been
shown to be successful at addressing the cold start problem (recommending new items which
haven’t been rated to users). Suppose document j is a collection of texts associated with
item j. The texts contain words from a dictionary of length v. Then Qxj = f(x, j) where f
may be defined in the following three ways:

(i) f(x, j) =

{
1 if word x occurs in document j,

0 otherwise.

(ii) f(x, j) = the number of occurrences of word x in document j.

(iii) f(x, j) = TF-IDF(x, j)

Now we can assume that words can be represented in a lower dimensional space than the
n-dimensional document space; the same space that user and item profiles belong to. So
now, we learn the item profile vectors of P and user profile vectors in the matrix U , as well
as word profile vectors in the matrix W .

5.1 Brian’s Model

Wxr is now interpeted as word x’s association with latent factor r. Vux = U:uW
T
:x is then a

user word prediction (how much a user likes a certain word). The prediction function is

Rui ≈ Vu:Q:i. (5.1)

A new item may be recommended by appending its document term vector to Q. Also, the
refinements from any of the preceding models can be incorporated into this model without
much trouble. Let L̃p be the loss function from any of the models in previous sections
without regularization terms, Fp be the associated regularization terms, λ be a parameter
determining weights on the factorizations, and λ7 be a weight controlling regularization of
W . We can add a word bias to the model by appending two columns to W so that:

ŴT =


W11 . . . Wn1

...
. . .

...
W1k . . . Wnk

1 . . . 1
c1 . . . cn
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Below is the schema to incorporate any of the previous models into this JF model. (for
models incorporating bias, replace U,W, and P with Û , Ŵ , and P̂ and elementwise multiply
appropriate masks to gradient formulas). The loss and gradients:

L7 =
1

2
λ‖Ω ◦

(
R− UW TQ

)
‖2F + (1− λ)L̃p + Fp +

1

2
λ7‖W‖2F (5.2)

∇UL7 = −λΩ ◦ (R− UWTQ)QTW + (λ− 1)∇U L̃p +∇UFp (5.3)

∇PL7 = (λ− 1)∇P L̃p +∇PFp (5.4)

∇WL7 = −λQ
(

ΩT ◦
(
RT −QTWUT

))
U + λ7W (5.5)

5.2 Eliminating Ω from the second factorization

To avoid a loss of information in learning the parameters contained in the W matrix we
can eliminate the mask Ω from the bottom factorization in the previous model by replacing
R with UP T in the bottom factorization and cancelling U on both sides of the equation.
An added bonus is that this model is more computationally efficient. The prediction rule
remains the same.

⇒
The loss and gradients:

L8 =
1

2
λ‖PT −WTQ‖2F + (1− λ)L̃p + Fp +

1

2
λ7‖W‖2F (5.6)

∇UL8 = (λ− 1)∇U L̃p +∇UFp (5.7)

∇PL8 = −λ(QTW − P ) + (λ− 1)∇P L̃p +∇PFp (5.8)

∇WL8 = −λQ(P −QTW ) + λ7W (5.9)

5.3 Local Collective Embeddings

A different approach to incorporating the same information contained in text is the Local
Collective Embeddings model. The idea is that the dot product of a word profile vector
and item profile vector can predict how often or important a word is to a particular docu-
ment associated with an item. A decision rule for a new item i is to derive a item profile
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from the least squares problem WP:i ≈ Qi, and then use the standard prediction formula
Rvi = Uv:P

T
i: . Once again the refinements from previous models can easily be incorporated.

The disadvantage to this model is that each time a new item is incorporated into the sys-
tem a least squares problem must be solved to find the new item profile, whereas in the
previous JF models it was only necessary to take the dot product of two vectors, a simpler
computation.

The associated loss function and gradients:

L9 =
1

2
λ‖Q−WPT‖2F + (1− λ)L̃p + Fp +

1

2
λ7‖W‖2F (5.10)

∇UL9 = (λ− 1)∇U L̃p +∇UFp (5.11)

∇PL9 = −λ(QT − PWT)W + (λ− 1)∇P L̃p +∇PFp (5.12)

∇WL9 = −λ(Q−WPT)P + λ7W (5.13)

A more general discussion of JF approaches to Machine Learning can be found in “Relational
learning via collective matrix factorization” by Singh and Gordon (2008) [1].

6 Tensor Decomposition

7 Non-linearity
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8 General SVD Loss Gradient

∇X‖D ◦ (A±BXC)‖2F = ±2BT
(
D ◦D ◦ (A±BXC)

)
CT (8.1)

Proof. To show the identity we’ll find the expression for an arbitrary element of this gradient.

∂

∂Xkl

‖ D︸︷︷︸
m×n

◦( A︸︷︷︸
m×n

± B︸︷︷︸
m×p

X︸︷︷︸
p×q

C︸︷︷︸
q×n

)‖2F = (8.2)

∂

∂Xkl

m∑
i=1

n∑
j=1

(
Dij(Aij ±Bi:(XC):j)

)2
= (8.3)

m∑
i=1

n∑
j=1

∂

∂Xkl

(
Dij(Aij ±Bi:(XC):j)

)2
= (8.4)

m∑
i=1

n∑
j=1

D2
ij

∂

∂Xkl

(
Aij ±Bi:(XC):j

)2
= (8.5)

± 2
m∑
i=1

n∑
j=1

(
D2

ij

(
Aij ±Bi:(XC):j

) ∂

∂Xkl

Bi:(XC):j

)
= (8.6)

± 2
m∑
i=1

n∑
j=1

(
D2

ij

(
Aij ±Bi:(XC):j

) ∂

∂Xkl

p∑
r=1

Bir

q∑
v=1

XrvCvj︸ ︷︷ ︸
see (8.15)

)
= (8.7)

± 2
m∑
i=1

n∑
j=1

(
D2

ij

(
Aij ±Bi:(XC):j

) p∑
r=1

Bir

q∑
v=1

∂

∂Xkl

XrvCvj

)
= (8.8)

± 2
m∑
i=1

n∑
j=1

(
D2

ij

(
Aij ±Bi:(XC):j

)
Bik

∂

∂Xkl

XklClj

)
= (8.9)

± 2
m∑
i=1

n∑
j=1

(
D2

ij

(
Aij ±Bi:(XC):j

)
BikClj

)
= (8.10)

± 2
m∑
i=1

(BT)ki

(
(D ◦D)i: ◦ (Ai: ±Bi:XC)

)
(CT):l = (8.11)

± 2(BT)k:

(
(D ◦D) ◦ (A±BXC)

)
(CT):l = (8.12)

± 2
(
BT
(
D ◦D ◦ (A±BXC))CT

)
kl

(8.13)

⇒ ±2 BT︸︷︷︸
p×m

(D ◦D ◦ (A±BXC))︸ ︷︷ ︸
m×n

CT︸︷︷︸
n×q

= ∇X‖D ◦ (A±BXC)‖2F︸ ︷︷ ︸
p×q

(8.14)
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B︸︷︷︸
m×p

X︸︷︷︸
p×q

C︸︷︷︸
q×n

Bi:(XC):j = Bi:


X1:C:j

X1:C:j
...

X1:C:j

 = Bi:


q∑

v=1

X1vCvj

...
q∑

v=1

XpvCvj

 =

p∑
r=1

Bir

q∑
v=1

XrvCvj (8.15)

Notice that (1) has almost the same form as (119) from The Matrix Cookbook. [8]

(119)
∂

∂X
Tr
[
(AXB + C)(AXB + C)T

]
= 2BT(AXB + C)CT =

∂

∂X
‖C + AXB‖2F

(8.16)
So, probably there is some really nice way to derive (8.1) using (119). In any case there are
lots of useful identities we can derive from special cases of (8.1), including (119).

∇X‖D ◦ (A±XC)‖2F = ±2(D ◦D ◦ (A±XC))CT (8.17)

∇X‖A±XC‖2F = ±2(A±XC)CT (8.18)

∇X‖XC‖2F = 2XCCT (8.19)

∇X‖X‖2F = 2X (8.20)

∇X‖A ◦X‖2F = 2A ◦ A ◦X (8.21)
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Alternate proof of (2):

(2) ∇B‖D ◦ (A±BC)‖2F = ±2 (D ◦D ◦ (A±BC))︸ ︷︷ ︸
m×n

CT︸︷︷︸
n×p

Proof. To show the identity we’ll find the expression for an arbitrary element of this gradient.

∂

∂Bkl

‖D◦(A±BC)‖2F =
∂

∂Bkl

∑
i

∑
j

(
Dij(Aij±Bi:C:j)

)2
=
∑
i

∑
j

∂

∂Bkl

(
Dij(Aij±Bi:C:j)

)2
=

∑
j

∂

∂Bkl

(
Dkj(Akj ±Bk:C:j)

)2
= 2

∑
j

Dkj(Akj ±Bk:C:j)
∂

∂Bkl

Dkj(Akj ±Bk:C:j) =

2
∑
j

D2
kj(Akj±Bk:C:j)

∂

∂Bkl

(Akj±Bk:C:j) = 2
∑
j

D2
kj(Akj±Bk:C:j)

( ∂

∂Bkl

Akj±
∂

∂Bkl

Bk:C:j

)
=

2
∑
j

D2
kj(Akj ±Bk:C:j)

(
± ∂

∂Bkl

Bk:C:j

)
= ±2

∑
j

(
D2

kj(Akj ±Bk:C:j)
∂

∂Bkl

∑
p

BkpCpj

)
=

±2
∑
j

D2
kj(Akj ±Bk:C:j)

∂

∂Bkl

BklClj = ±2
∑
j

D2
kj(Akj ±Bk:C:j)Clj =

±2
(

(D ◦D)k: ◦ (Ak: ±Bk:C)
)

(CT):l = ±2
(
D ◦D ◦ (A±BC))CT

)
kl

⇒ ±2(D ◦D ◦ (A±BC))CT = ∇B‖D ◦ (A±BC)‖2F

9 TF-IDF

• rare terms are not less relevant than frequent terms (IDF assumption);

• multiple occurrences of a term in a document are not less relevant than single occur-
rences ( TF assumption);

• long documents are not preferred to short documents (normalization assumption).

In other words, terms that occur frequently in one document (TF =term-frequency), but
rarely in the rest of the corpus (IDF = inverse-document-frequency), are more likely to be
relevant to the topic of the document. In addition, normalizing the re- sulting weight vectors
prevent longer documents from having a better chance of retrieval. [9, p. 78]
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Let, tk be a key term in the corpus, dj a document in the corpus. Then let fk,j be the
number of times a key term occurs in a document. Further, let Qj be the set of key terms
in a document. Then,

TF(tk, dj) =
fk,j

max
z∈Qj

fz,j

Let N be the number of documents in the corpus, and nk be the number of documents in
the corpus where tk occurs at least once. Then,

IDF(tk, kj) = log
N

nk

So,

TF-IDF(tk, dj) = TF ∗ IDF =
fk,j

max
z∈Qj

fz,j
log

N

nk

TF-IDF weights, wk,j, for term tk, and document dj are usually normalized to fall in the
[0,1] interval using cosine normalization. Let t be the total number of key term types (as
opposed to tokens) in the corpus.

wk,j =
TF-IDF(tk, dj)√∑t
s=1 TF-IDF(ts, dj)2

[9, p. 78]
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