Boosting:

A weighted crowd of narrowminded experts

Aaron & Dylan

Boosting Hypothesis (Kearne, Valiant; 1988-89)

We can make a strong classifier (arbitrarily well at classification) from a collection of weak classifiers (somewhat better than random guess).

Weak Classifiers

- Classifier which may be only slightly correlated with true classification (accuracy > 50%)
- Examples: Naïve Bayes, logistic regression, decision stumps

Decision Stumps

- Single Level Decision Tree
- Focus on a single feature dimension
- Create a decision boundary along that dimension

Advantages of Boosting:

- Easy and fast to train weak classifiers
- Simple models don't usually overfit
- Weak classifiers can not solve hard problems

Boosting: The Basic Idea

Selection Too

AdaBoost: Boosting for Binary Classification

Suppose dataset: $(x_1, y_1), ..., (x_N, y_N)$ where $x_i \in \mathbb{R}^n, y_i \in Y = \{-1, 1\}$ Let $D_t(i) =$ weight of point x_i Goal: Build classifer $H(x) = \operatorname{sign}(\alpha_1 h_1(x) +, ..., +\alpha_T h_T(x))$ where $h_1(x), ..., h_T(x)$ are binary classifiers, built on distributions $D_1, ..., D_T$ respectively.

Issue: How to find the best α 's and D's.

Answer: Iteratively minimize exponential loss:

If $F(x) = \alpha_1 h_1(x) + \dots + \alpha_T h_T(x)$, then

$$L = \frac{1}{N} \sum_{i=1}^{T} \exp(-y_i F(x_i))$$

Round One:

Build h_1 on distribution D_1 $\epsilon_1 = 3/10$ $\alpha_1 = 0.42$ $D_2(i) = 0.166$ for x_i that were misclassified $D_2(i) = 0.072$ for x_i that were correctly classified **Round Two:** Build h_2 on distribution D_2 $\epsilon_2 = 0.216$ $\alpha_2 = 0.65$

Boosting Demos

Swirly boosting demo

More Swirly boosting demo

AdaBoost in acton

References:

Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In *Nonlinear estimation and classification* (pp. 149-171). Springer New York.

Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2), 197-227.

Kearns, M. (1988). Thoughts on hypothesis boosting. Unpublished manuscript, 45, 105.

Long, P. M., & Servedio, R. A. (2010). Random classification noise defeats all convex potential boosters. *Machine Learning*, 78(3), 287-304.

Freund, Y., & Schapire, R. E. (1995, January). A decision-theoretic generalization of on-line learning and an application to boosting. In *Computational learning theory* (pp. 23-37). Springer Berlin Heidelberg.

MIT Boosting Lecture

Software:

Wikipedia list from AdaBoost page

Boosting Song