Recommender Systems

Purpose
- Survey state of the art Matrix Factorization solutions to the Cold Start problem.
- Suggest avenues of further research.

User-Item Utility Matrix
Ratings for m users and n items in \(m \times n \) matrix, \(R \).
\[R_{u,i} = u \text{’s rating of item } i \]

Cold Start Problem

How to give ratings for new users and new items for which no ratings are recorded in the dataset?

Modeling Global Behavior

\[R_{u,i} = b_{u} + p_{u} \cdot q_{i} + \epsilon_{u,i} \]

\(b_{u} = \mu + \sigma_{u} \) and \(\sigma_{i} = \) observed deviations of user \(u \) and item \(i \) from \(\mu \).

Objective Function
\[L(Q, P) = \sum_{(u,i)} (R_{u,i} - q_{i}^T p_{u})^2 + \lambda (\|q_{i}\|^2 + \|p_{u}\|^2) \]

Gradient Descent Step
\[\frac{\partial L}{\partial p_{u}} = 2 \sum_{i \in u} \sum_{h \in i} R_{h,i} (q_{h}^T p_{u}) - 2 \lambda p_{u} \]

Functional Matrix Factorization

- Hybrid MF-Decision Tree Recommender System
- Uses MF to find best quotas to estimate user profiles

Item Cold Start Solution

For new item \(z \), use decision tree and quotas to derive user profile \(p_{z} \). Use \(z \)'s estimated rating for \(i \) then \(q_{i}^T p_{z} + \mu \).

Local Collective Embeddings

- Hybrid content-based MF recommender
- TF-IDF

Objective Function
\[\min_{(t_j, d_j)} (f_{k,j} - \max_{t_j \in d_j} \log N) \frac{f_{k,j}}{n_{d,j}} \]

Collective Factorization
\[D_{k,j} = TF-IDF(t_j, d_j) \]

User Cold Start

Objective Function
\[\frac{1}{2} \sum_{(u,i)} (R_{u,i} - q_{i}^T p_{u})^2 \]

Closed Form
\[h_{t_j} = \arg \min_{h} \sum_{(u,i)} \sum_{w \in u \cap (h \cup z)} (R_{u,i} - q_{i}^T p_{h}) \]

Item Cold Start Solution

For new item \(z \) and TF-IDF vector \(d_{z} \), derive item profile \(q_{z} \) using common factors \(f_{k,j} \) by solving \(W Q = d_{z} \). Use \(z \)'s estimated rating for \(i \) is then \(q_{z}^T p_{i} + \mu \).

General Cold Start

Further Research
- Benchmark state of the art methods using Amazon dataset
- Explore cold start metric based on new user/item frequency and user/item ratio which leverages performance of both user and item cold start scenarios
- Develop method which addresses user and item cold start
- Use product descriptions to generate topic factorization \(W Q^T \) and topic keywords to generate decision tree \(T \).

User Cold Start Solution

Collective Factorization
\[D_{k,j} = TF-IDF(t_j, d_j) \]

Local Collective Embeddings

- Hybrid content-based MF recommender
- TF-IDF

Objective Function
\[\min_{(t_j, d_j)} (f_{k,j} - \max_{t_j \in d_j} \log N) \frac{f_{k,j}}{n_{d,j}} \]

Collective Factorization
\[D_{k,j} = TF-IDF(t_j, d_j) \]

Amazon Dataset

- 6,643,669 users
- 28 product categories & descriptions for all products

References