Circle T (true) or F (false) as appropriate. Each of the 17 true/false questions is worth 1 point. Question 4 is worth 3 points.

1. Suppose \(v \) is a descendant of \(u \) in a \(G_\pi \)-tree created by the depth-first-search algorithm. How are the discovery and finish times of \(u \) and \(v \) related? Recall \(w.d \) denotes the discovery time of node \(w \), while \(w.f \) denotes its finish time.

(a) F T \(u.d < v.d < v.f < u.f \)
(b) F T \(v.d < u.d < u.f < v.f \)
(c) F T \(v.d < v.f < u.d < u.f \)
(d) F T \(u.d < u.f < v.d < v.f \)
(e) F T \(v.d < u.d < v.f < u.f \)

2. Consider the point in the depth-first search algorithm when vertex \(v \) is observed on the adjacency list of vertex \(u \). Then \((u, v) \) is a tree edge if \(v \) is

(a) F T white
(b) F T gray
(c) F T black
(d) F T colorless

3. Consider the point in the depth-first search algorithm when a gray vertex \(v \) is observed on the adjacency list of vertex \(u \). Then

(a) F T \((u, v) \) is a forward edge
(b) F T \((u, v) \) is a backward edge
(c) F T \((u, v) \) is a cross edge
(d) F T \((u, v) \) is a tree edge

4. Suppose a directed acyclic graph contains the edge \((v, u) \). Why, when we run depth-first-search on the graph, must we obtain \(u.f < v.f \)?

5. Suppose \(G_n = (V_n, E_n) \) is a sequence of graphs of increasing size. That is, \(|V_{n+1}| + |E_{n+1}| > |V_n| + |E_n|\). Let \(f(n) \) be the size of the adjacency list representation for \(G_n \). Let \(g(n) \) be the size of the adjacency matrix representation for \(G_n \).

(a) F T If \(|E_n| = \Theta(|V_n|) \), then \(f = \Theta(g) \).
(b) F T If \(|E_n| = \Theta(|V_n|^2) \), then \(f = \Theta(g) \).
(c) F T If \(|E_n| = \Theta(\sqrt{|V_n|}) \), then \(f = O(g) \).
(d) F T If \(|E_n| = \Theta(|V_n|^{3/2}) \), then \(f = \omega(g) \).
Solutions.

1. Suppose v is a descendant of u in a G_π-tree created by the depth-first-search algorithm. How are the discovery and finish times of u and v related? Recall $w.d$ denotes the discovery time of node w, while $w.f$ denotes its finish time.

 (a) **True** $u.d < v.d < v.f < u.f$
 (b) **False** $v.d < u.d < u.f < v.f$
 (c) **False** $v.d < v.f < u.d < u.f$
 (d) **False** $u.d < u.f < v.d < v.f$
 (e) **False** $v.d < u.d < v.f < u.f$

 From the parentheses theorem, (a) is **true** and (b) - (e) are **false**.

2. Consider the point in the depth-first search algorithm when vertex v is observed on the adjacency list of vertex u. Then (u, v) is a tree edge if v is

 (a) **True** white
 (b) **False** gray
 (c) **False** black
 (d) **False** colorless

 From the dynamic edge classification theorem, (u, v) is a tree edge when v is white. (a) is **true**; (b) - (d) are **false**.

3. Consider the point in the depth-first search algorithm when a gray vertex v is observed on the adjacency list of vertex u. Then

 (a) **False** (u, v) is a forward edge
 (b) **True** (u, v) is a backward edge
 (c) **False** (u, v) is a cross edge
 (d) **False** (u, v) is a tree edge

 From the dynamic edge classification theorem, (u, v) is a backward edge when v is gray. (b) is **true**; (a), (c), and (d) are **false**.

4. Suppose a directed acyclic graph contains the edge (v, u). Why, when we run depth-first-search on the graph, must we obtain $u.f < v.f$?

 Assume, for purposes of deriving a contradiction, that we obtain $v.f < u.f$. There are three possible locations for $u.d$.

 (a) We find $v.d < v.f < u.d < u.f$. This case is not possible because u is on the adjacency list of v. Hence, u will be seen before $v.f$, and if u has not already been discovered, it will be discovered at that point — before $v.f$.
 (b) We find $v.d < u.d < v.f < u.f$. This case is not possible because the parenthesis theorem precludes interleaving of discovery-finish intervals.
 (c) We find $u.d < v.d < v.f < u.f$. In this case, the parenthesis theorem assures us that v is a G_π descendant of u, which means that the edge (v, u) is a back edge. However, an acyclic graph can have no back edges because such an edge would induce a cycle.

 We conclude that DFS must find $u.f < v.f$.
5. Suppose \(G_n = (V_n, E_n) \) is a sequence of graphs of increasing size. That is, \(|V_{n+1}| + |E_{n+1}| > |V_n| + |E_n|\). Let \(f(n) \) be the size of the adjacency list representation for \(G_n \). Let \(g(n) \) be the size of the adjacency matrix representation for \(G_n \).

(a) **False** If \(|E_n| = \Theta(|V_n|)\), then \(f = \Theta(g) \).

(b) **True** If \(|E_n| = \Theta(|V_n|^2)\), then \(f = \Theta(g) \).

(c) **True** If \(|E_n| = \Theta(\sqrt{|V_n|})\), then \(f = O(g) \).

(d) **False** If \(|E_n| = \Theta(|V_n|^{3/2})\), then \(f = \omega(g) \).

We have \(K_1(|V_n| + |E_n|) \leq f(n) \leq K_2(|V_n| + |E_n|) \) and \(K_3|V_n|^2 \leq g(n) \leq K_4|V_n|^2 \), which implies
\[
\frac{K_1(|V_n| + |E_n|)}{K_4|V_n|^2} \leq \frac{f(n)}{g(n)} \leq \frac{K_2(|V_n| + |E_n|)}{K_3|V_n|^2}.
\]

(a) For this case, we have \(|E_n| \leq K_5|V_n|\), which then implies
\[
\frac{f(n)}{g(n)} \leq \frac{K_2(|V_n| + K_5|V_n|)}{K_3|V_n|^2} = \frac{K_2 + K_2K_5}{K_3|V_n|} \leq 0.
\]
So \(f \neq \Omega(f) \), and therefore \(f \neq \Theta(g) \). This case is **false**.

(b) For this case, we have \(K_6|V_n|^2 \leq |E_n| \leq K_7|V_n|^2 \), which implies
\[
\frac{K_1(|V_n| + K_6|V_n|^2)}{K_4|V_n|^2} \leq \frac{f(n)}{g(n)} \leq \frac{K_2(|V_n| + K_7|V_n|^2)}{K_3|V_n|^2} \geq \frac{K_2 + K_2K_7}{K_3}.
\]
Therefore, \(f = \Theta(g) \). This case is **true**.

(c) For this case, we have \(|E_n| \leq K_8|V_n|^{1/2} \), which implies
\[
\frac{f(n)}{g(n)} \leq \frac{K_2(|V_n| + K_8|V_n|^{1/2})}{K_3|V_n|^2} \leq \frac{(K_2 + K_2K_8)|V_n|}{K_3|V_n|^2} = \frac{K_2 + K_2K_8}{K_3|V_n|} \leq 0.
\]
So \(f = o(g) \), which implies \(f = O(g) \). This case is **true**.

(d) For this case, we have \(|E_n| \leq K_9|V_n|^{3/2} \), which implies
\[
\frac{f(n)}{g(n)} \leq \frac{K_2(|V_n| + K_9|V_n|^{3/2})}{K_3|V_n|^2} \leq \frac{(K_2 + K_2K_9)|V|^{3/2}}{K_3|V_n|^2} = \frac{K_2 + K_2K_9}{K_3|V_n|^{1/2}} \leq 0.
\]
Therefore \(f = o(g) \). Then \(f \neq \omega(g) \). This case is **false**.