1. Given an undirected graph $G = (V, E)$, the components of G partition V into nonempty, nonintersecting subsets C_1, C_2, \ldots, C_k of mutually connected vertices. That is,

- $C_i \neq \emptyset$ for $1 \leq i \leq k$;
- $u, v \in C_i \Rightarrow \exists$ path from u to v via edges in E;
- $u \in C_i, v \in C_j, i \neq j \Rightarrow \exists$ path from u to v via edges in E;
- $V = \bigcup_{i=1}^{k} C_i$.

Assume that each vertex contains an attribute c that will, after a depth-first search scan, contain the number of the component containing the vertex. Consequently when the algorithm terminates, each vertex u has $u.c = i$ for some $1 \leq i \leq k$. The number of components, k, is not known when the algorithm starts. Modify the depth-first search of the text such that each vertex contains its component mark on termination. That is, all vertices within a component will have the same component mark, and no two vertices in different components will have the same mark.

2. Give an example of a directed graph, $G = (V, E)$, containing a path from u to v, but for which the DFS algorithm assigns $u.d < v.d$. That is, the algorithm exhausts the adjacency list of u before discovering v. To make this happen, you will have to specify the order of edges on each adjacency list, and also the starting vertex of the for-loop in lines 5–7 of the textbook DFS algorithm.

3. Give an example of a directed graph, $G = (V, E)$, containing a path from u to v, for which DFS assigns $u.d < v.d$, but for which v is not a $G\pi$-descendant of u. Again, you will need to specify the order of edges on the adjacency list and the starting vertex to force DFS to behave in the desired manner.