1. Let
\[f(n) = \sum_{k=1}^{n} \frac{6}{k^2}. \]

To show that \(f(n) = \Theta(1) \), we need numbers \(N, K_1, K_2 \) such that \(n \geq N \Rightarrow 0 < K_1 \leq f(n) \leq K_2 < \infty \). Find values for \(N, K_1, K_2 \) and show how these numbers confirm \(f(n) = \Theta(1) \).

2. For \(0 < k < n \), prove that
\[\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}. \]

3. Alien Alice claims to have extrasensory perception. Baysian Bob places a prior probability \(10^{-6} \) on the truth of Alice’s assertion. Bob isolates Alice in a room having no possibility of communication with the outside world and then, in another distant room, flips a fair coin \(n \) times. Alice correctly reports the correct sequence of heads and tails. Following Bayes’ Theorem, Bob evaluates a posterior probability that Alice has extrasensory perception. Clearly, a large \(n \) forces Bob to accept a larger probability that Alice is indeed clairvoyant. What is the smallest value of \(n \) such that Bob would calculate a posterior probability greater than or equal to \(1/2 \)?

Most of the credit for this problem will be given for correctly setting up the equation for \(n \); the balance will be for finding an expression for \(n \) that needs only arithmetic to finish the calculation. Use the reverse side of this page for your calculations.
Solutions.

1. Let

\[f(n) = \sum_{k=1}^{n} \frac{6}{k^2}. \]

To show that \(f(n) = \Theta(1) \), we need numbers \(N, K_1, K_2 \) such that \(n \geq N \Rightarrow 0 < K_1 \leq f(n) \leq K_2 < \infty \). Find values for \(N, K_1, K_2 \) and show how these numbers confirm \(f(n) = \Theta(1) \).

For any \(n \geq 1 \), the first term of the sequence is six and the remaining terms are positive fractions. Therefore for any \(n \geq 1 \), we have

\[
6 \leq \sum_{k=1}^{n} \frac{6}{k^2} \leq 6 + \sum_{k=2}^{n} \frac{6}{k(k-1)} = 6 + \sum_{k=2}^{n} \left(\frac{6}{k-1} - \frac{6}{k} \right) = 6 + 6 \left(\sum_{k=2}^{n} \frac{1}{k-1} - \sum_{k=2}^{n} \frac{1}{k} \right)
\]

\[
= 6 + 6 \left(\sum_{k=1}^{n-1} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k} \right) = 6 + 6 \left(1 + \sum_{k=2}^{n-1} \frac{1}{k} - \sum_{k=2}^{n-1} \frac{1}{k} - \frac{1}{n} \right) = 6 + 6 \left(1 - \frac{1}{n} \right) \leq 12.
\]

We let \(N = 1, K_1 = 1, K_2 = 12 \), and the above calculations confirm that \(n \geq N \Rightarrow 0 < K_1 \leq f(n) \leq K_2 < \infty \), which in turn implies \(f(n) = \Theta(1) \).

2. For \(0 < k < n \), prove that

\[
\left(\begin{array}{c} n \\ k \end{array} \right) = \frac{n}{k} \frac{(n-1)!}{(k-1)!}.
\]

By direct calculation,

\[
\left(\begin{array}{c} n \\ k \end{array} \right) = \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1)!}{[k \cdot (k-1)]!(n-k)!} = \frac{n}{k} \frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!} = \frac{n}{k} \left(\begin{array}{c} n-1 \\ k \end{array} \right).
\]

3. Alien Alice claims to have extrasensory perception. Baysian Bob places a prior probability \(10^{-6} \) on the truth of Alice’s assertion. Bob isolates Alice in a room having no possibility of communication with the outside world and then, in another distant room, flips a fair coin \(n \) times. Alice correctly reports the correct sequence of heads and tails. Following Bayes’ Theorem, Bob evaluates a posterior probability that Alice has extrasensory perception. Clearly, a large \(n \) forces Bob to accept a larger probability that Alice is indeed clairvoyant. What is the smallest value of \(n \) such that Bob would calculate a posterior probability greater than or equal to 1/2? Let \(E \) be the event that Alice has extrasensory perception; let \(R \) be the event that she correctly reports the coin flip sequence. With an overscore indicating the complement of an event, we have

\[
P(E) = 1.0 \times 10^{-6}
\]

\[
P(\overline{E}) = 1 - P(E) = 0.999999
\]

\[
P(R|E) = 1.0
\]

\[
P(R|\overline{E}) = \left(\frac{1}{2} \right)^n
\]

\[
P(E|R) = \frac{P(R|E)P(E)}{P(R|E)P(E) + P(R|\overline{E})P(\overline{E})} = \frac{10^{-6}}{10^{-6} + 0.999999(1/2)^n} = \frac{1}{1 + 999999/2^n}.
\]

To have the posterior \(P(E|R) \geq 1/2 \), we need

\[
\frac{999999}{2^n} \leq 1
\]

\[
2^n \geq 999999.
\]

Since \(2^{20} = (1024)^2 = 1048576 > 999999 \), and \(2^{19} \) is half that value, which is less than 999999, we conclude that integer \(n \geq 20 \).