1. Let $0 < \alpha \leq 1/2$. Suppose Quicksort takes a path such that each segment of length m removes a pivot and produces two segments of length $\alpha m - 1$ and $(1 - \alpha)m$. Considering the top level of the recursion tree to be level 0, find an expression for $k =$ deepest level at which a leaf (segment with one element) may appear. Ignore round-ups and round-downs by assuming that segments produced by the α-expressions are integers.

2. Show that the instruction count along such a path is $O(n \lg n)$. That is, consider an input permutation that causes the subproblem size evolution in the preceding question, and show that the time complexity is $O(n \lg n)$ for that permutation.

3. Show that the instruction count along such a path is $\Theta(n \lg n)$. That is, consider an input permutation that causes the subproblem size evolution in the preceding question, and show that the time complexity is $\Omega(n \lg n)$ for that permutation.