Announcement

Article 2 Summaries/Critiques

For full credit, you needed to include at least one technical detail about the methodology in BLAST that makes it unique and distinguishable from all previous methods (at that time):

- Threshold (T score)
- MSP
- Bitwise searching
- Extending a match
- FSM

The critique needed to be constructive. Saying “the article was difficult to read” is not enough. Instead ...

- “Add more pseudo code”
- “Additional visual explanations of the algorithm would have been helpful”
- “Including a full step-by-step explanation of BLAST on a small example would make the algorithm easier to understand”
Announcement

Article 3 Summaries/Critiques

Your goal is to write a summary and critique that is easily digestible by somebody who has NOT read the article. Still focusing on the WHAT, WHY, and HOW
Announcement

Exam

Take home (over 2 nights), or in-class?

Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date(s)</th>
<th>Lectures</th>
<th>Article Reading</th>
<th>Lab(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04 April</td>
<td>Watson & Crick, DNA</td>
<td>Lab 1: Online databases</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11 April</td>
<td>Lipman et al., BLAST</td>
<td>Lab 2a: Sequence Alignment, online</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18 April</td>
<td>Lab 2b: Sequence Alignment, coding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25 April</td>
<td>Lab 3a: MSA, online</td>
<td>Lab 3b: MSA, scripting</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>02 May</td>
<td>Lab 4a: MSA, online</td>
<td>Lab 4b: MSA, scripting</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>09 May</td>
<td>Lab 5a: visualization, online</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16 May</td>
<td>Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23 May</td>
<td>Project Proof of Concept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30 May</td>
<td>Project Final Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>06 June</td>
<td>Project Presentations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Announcement

Exam

Take home (over 2 nights), or in-class?

Course Project

• Group formation : 2-6 May
• Proposal : 10 May (presentation)
• Proof of Concept (Canvas submission)
• Final Results (Canvas submission)
• Presentation (31 May – 03 June)
Project Idea 1: “constrained” sequence alignment

Q: With which genes does ACCTCGCTAGCAT align best in the human genome ...
Announcement

Project Idea 1: “constrained” sequence alignment

Q: With which genes does
ACCT\text{CGC}\text{TAG}\text{CAT} align best
in the human genome ... such
that \text{CGC} and \text{CAT} align
perfectly?
Announcement

Project Idea 1: “constrained” sequence alignment

Q: With which genes does ACCTCGCTAGCAT align best in the human genome ... such that CGC and CAT align perfectly?

Goal

- Implement an algorithm that achieves this task for DNA or proteins.
- Demonstrate the algorithm’s use.
- Report on its scalability and runtime performance.
From last time ...

Mutations to the DNA sequences

- Substitution
- Deletion
- Insertion
- Inversion
- Translocation
From last time ...

Mutations to the DNA sequences

- Substitution
- Deletion
- Insertion
- Inversion
- Translocation
From last time ...

Mutations to the DNA sequences

- **Substitution**
- **Deletion**
- **Insertion**
- **Inversion**
- **Translocation**

<table>
<thead>
<tr>
<th></th>
<th>Human1</th>
<th>Pig</th>
<th>Chick</th>
<th>Human2</th>
<th>Mouse</th>
<th>Bacteria</th>
<th>FLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>GLKELPMRNLQEIILHGAV</td>
<td>GLRELPMRNLQEIILQGAV</td>
<td>GLRELPMKRLSEILNGGV</td>
<td>GLQELGLKNLTEILNGGV</td>
<td>HLKELGLYNLMNITRGSV</td>
<td>DMQKIGLYSLQNITRGSV</td>
<td>KDLEIGLYNLRNITRGAV</td>
</tr>
</tbody>
</table>

Substitution Mutation
From last time ...

Mutations to the DNA sequences

- **Substitution**
- **Deletion**
- **Insertion**
- **Inversion**
- **Translocation**

Residues that have specificity to certain subfamilies of organisms are a case-by-case basis when inferring their effect. Conserved residues are most likely conserved for a very good reason, so mutations to those locations are probably **functional** mutations.
Q: What is it?
Visualization

Q: What is it?
Visualization

Q: What is it?

- Visualization of raw data
- Visualization of the analysis/interpretation of raw data

The best “visualization” is a mix of raw data and analysis of it
Visualization - Motivation

Napoleon’s Russian campaign, 1812
Visualization - Motivation

Napoleon’s Russian campaign, 1812
Visualization - Motivation

Napoleon’s Russian campaign, 1812

“Decisive” Russian Victory

Ratio of initial troops to survivors

Q: How “bad” was it
Visualization - Motivation

Napoleon’s Russian campaign, 1812

Q: What details does this plot provide?

Q: What details does this plot not provide?
Visualization - Motivation

Q: What details do this plot provide?

Q: What details do this plot not provide?

Q: What is the one big factor most often credited with causing Napoleon's defeat?
Q: How should we “combine” all four pieces of data

- Troop movement
- Troop numbers
- Temperature
- Date(s)
Q: How should we “combine” all four pieces of data

- Troop movement
- Troop numbers
- Temperature
- Date(s)

Until 3D or nD ($n > 3$) tools become available, how do we visualize high-dimensional data using only 2D dimensional mediums (printed paper, standard graphics and “plots”)
Visualization - Motivation

Napoleon’s Russian campaign, 1812

Task: Identify the “data” on this plot (a) Num of troops, (b) Distance, (c) temperature
Visualization – protein and DNA sequences

HIV-1 protease is essential for the life-cycle of HIV, the retrovirus that causes AIDS. HIV protease cleaves virion pre-cursor polyproteins which then assemble to form the HIV virion.
HIV-1 protease is essential for the life-cycle of HIV, the retrovirus that causes AIDS. HIV protease cleaves virion pre-cursor polyproteins which then assemble to form the HIV virion.

Q: Does identification of the amino acids of the HIV-1 protease polypeptide chain inform us about how the protein might work?

If “no,” then what other information is needed?
Visualization – protein and DNA sequences

HIV-1 protease is essential for the life-cycle of HIV, the retrovirus that causes AIDS. HIV protease cleaves virion pre-cursor polyproteins which then assemble to form the HIV virion.

A little better ...

Unless you can visualize 99 amino acids and their atoms in 3D space, even this data set of experimentally-derived atom coordinates do not provide much information about the function of the protease.

<table>
<thead>
<tr>
<th>ATOM</th>
<th>1</th>
<th>N</th>
<th>PRO A 1</th>
<th>52.574</th>
<th>58.851</th>
<th>-7.646</th>
<th>1.00</th>
<th>34.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOM</td>
<td>2</td>
<td>CA</td>
<td>PRO A 1</td>
<td>51.842</td>
<td>59.784</td>
<td>-6.815</td>
<td>1.00</td>
<td>34.88</td>
</tr>
<tr>
<td>ATOM</td>
<td>3</td>
<td>C</td>
<td>PRO A 1</td>
<td>52.146</td>
<td>59.438</td>
<td>-5.356</td>
<td>1.00</td>
<td>36.01</td>
</tr>
<tr>
<td>ATOM</td>
<td>4</td>
<td>O</td>
<td>PRO A 1</td>
<td>53.031</td>
<td>58.612</td>
<td>-5.150</td>
<td>1.00</td>
<td>35.05</td>
</tr>
<tr>
<td>ATOM</td>
<td>5</td>
<td>CB</td>
<td>PRO A 1</td>
<td>59.301</td>
<td>59.581</td>
<td>-7.189</td>
<td>1.00</td>
<td>34.07</td>
</tr>
<tr>
<td>ATOM</td>
<td>6</td>
<td>CG</td>
<td>PRO A 1</td>
<td>50.353</td>
<td>58.166</td>
<td>-7.724</td>
<td>1.00</td>
<td>32.00</td>
</tr>
<tr>
<td>ATOM</td>
<td>7</td>
<td>CD</td>
<td>PRO A 1</td>
<td>51.621</td>
<td>58.242</td>
<td>-8.540</td>
<td>1.00</td>
<td>31.72</td>
</tr>
<tr>
<td>ATOM</td>
<td>8</td>
<td>N</td>
<td>GLN A 2</td>
<td>51.488</td>
<td>60.047</td>
<td>-4.359</td>
<td>1.00</td>
<td>35.47</td>
</tr>
<tr>
<td>ATOM</td>
<td>9</td>
<td>CA</td>
<td>GLN A 2</td>
<td>51.577</td>
<td>59.564</td>
<td>-2.997</td>
<td>1.00</td>
<td>35.15</td>
</tr>
<tr>
<td>ATOM</td>
<td>10</td>
<td>C</td>
<td>GLN A 2</td>
<td>50.109</td>
<td>59.273</td>
<td>-2.094</td>
<td>1.00</td>
<td>33.50</td>
</tr>
<tr>
<td>ATOM</td>
<td>11</td>
<td>O</td>
<td>GLN A 2</td>
<td>49.368</td>
<td>60.231</td>
<td>-2.829</td>
<td>1.00</td>
<td>37.45</td>
</tr>
<tr>
<td>ATOM</td>
<td>12</td>
<td>CB</td>
<td>GLN A 2</td>
<td>52.076</td>
<td>60.630</td>
<td>-2.075</td>
<td>1.00</td>
<td>37.17</td>
</tr>
<tr>
<td>ATOM</td>
<td>13</td>
<td>CG</td>
<td>GLN A 2</td>
<td>52.024</td>
<td>59.911</td>
<td>-0.749</td>
<td>1.00</td>
<td>42.02</td>
</tr>
<tr>
<td>ATOM</td>
<td>14</td>
<td>CD</td>
<td>GLN A 2</td>
<td>52.639</td>
<td>60.592</td>
<td>0.439</td>
<td>1.00</td>
<td>43.50</td>
</tr>
<tr>
<td>ATOM</td>
<td>15</td>
<td>OE1</td>
<td>GLN A 2</td>
<td>53.841</td>
<td>60.484</td>
<td>0.675</td>
<td>1.00</td>
<td>44.41</td>
</tr>
<tr>
<td>ATOM</td>
<td>16</td>
<td>NE2</td>
<td>GLN A 2</td>
<td>51.824</td>
<td>61.272</td>
<td>1.246</td>
<td>1.00</td>
<td>43.72</td>
</tr>
<tr>
<td>ATOM</td>
<td>17</td>
<td>N</td>
<td>ILE A 3</td>
<td>49.555</td>
<td>58.119</td>
<td>-2.306</td>
<td>1.00</td>
<td>30.33</td>
</tr>
<tr>
<td>ATOM</td>
<td>18</td>
<td>CA</td>
<td>ILE A 3</td>
<td>48.107</td>
<td>57.932</td>
<td>-2.171</td>
<td>1.00</td>
<td>27.03</td>
</tr>
<tr>
<td>ATOM</td>
<td>19</td>
<td>C</td>
<td>ILE A 3</td>
<td>47.924</td>
<td>57.639</td>
<td>-0.692</td>
<td>1.00</td>
<td>26.95</td>
</tr>
<tr>
<td>ATOM</td>
<td>20</td>
<td>O</td>
<td>ILE A 3</td>
<td>48.736</td>
<td>56.921</td>
<td>-0.162</td>
<td>1.00</td>
<td>25.73</td>
</tr>
<tr>
<td>ATOM</td>
<td>21</td>
<td>CB</td>
<td>ILE A 3</td>
<td>47.623</td>
<td>56.740</td>
<td>-3.053</td>
<td>1.00</td>
<td>24.30</td>
</tr>
<tr>
<td>ATOM</td>
<td>22</td>
<td>CG1</td>
<td>ILE A 3</td>
<td>47.870</td>
<td>57.072</td>
<td>-4.513</td>
<td>1.00</td>
<td>24.07</td>
</tr>
<tr>
<td>ATOM</td>
<td>23</td>
<td>CG2</td>
<td>ILE A 3</td>
<td>46.116</td>
<td>56.491</td>
<td>-2.898</td>
<td>1.00</td>
<td>22.78</td>
</tr>
<tr>
<td>ATOM</td>
<td>24</td>
<td>CD1</td>
<td>ILE A 3</td>
<td>47.651</td>
<td>55.899</td>
<td>-5.455</td>
<td>1.00</td>
<td>21.74</td>
</tr>
<tr>
<td>ATOM</td>
<td>25</td>
<td>N</td>
<td>THR A 4</td>
<td>46.933</td>
<td>58.229</td>
<td>-0.055</td>
<td>1.00</td>
<td>24.74</td>
</tr>
<tr>
<td>ATOM</td>
<td>26</td>
<td>CA</td>
<td>THR A 4</td>
<td>46.701</td>
<td>58.033</td>
<td>1.344</td>
<td>1.00</td>
<td>25.63</td>
</tr>
<tr>
<td>ATOM</td>
<td>27</td>
<td>C</td>
<td>THR A 4</td>
<td>45.538</td>
<td>57.047</td>
<td>1.421</td>
<td>1.00</td>
<td>27.68</td>
</tr>
<tr>
<td>ATOM</td>
<td>28</td>
<td>O</td>
<td>THR A 4</td>
<td>44.798</td>
<td>56.981</td>
<td>0.423</td>
<td>1.00</td>
<td>29.86</td>
</tr>
<tr>
<td>ATOM</td>
<td>29</td>
<td>CB</td>
<td>THR A 4</td>
<td>46.378</td>
<td>59.394</td>
<td>1.948</td>
<td>1.00</td>
<td>25.77</td>
</tr>
<tr>
<td>ATOM</td>
<td>30</td>
<td>CG1</td>
<td>THR A 4</td>
<td>45.232</td>
<td>59.946</td>
<td>1.314</td>
<td>1.00</td>
<td>26.30</td>
</tr>
<tr>
<td>ATOM</td>
<td>31</td>
<td>CG2</td>
<td>THR A 4</td>
<td>47.406</td>
<td>60.335</td>
<td>1.728</td>
<td>1.00</td>
<td>25.63</td>
</tr>
<tr>
<td>ATOM</td>
<td>32</td>
<td>N</td>
<td>LEU A 5</td>
<td>45.285</td>
<td>56.360</td>
<td>2.548</td>
<td>1.00</td>
<td>26.30</td>
</tr>
</tbody>
</table>
Visualization – protein and DNA sequences
Visualization – protein and DNA sequences

The visual 3D representation of HIV-1 protease permits us to “see” the protein’s structure.

And now we can ask question ... cleft ... flaps ... virion pre-cursor cells.
Q: Does the inclusion of a ligand (polypeptide) into the cleft alter the protein’s function?
Visualization – protein and DNA sequences

Q: Does the inclusion of a ligand (polypeptide) into the cleft alter the protein’s function?

(this week’s first lab)
Visualization – protein and DNA sequences

Human1 GLKELLHGAV
Pig GLRELLQGAV

What is one approach of “visually” representing alignment (that you’ve already seen in lab)?
Q: What other commonly used visualization techniques for inferring correlations are available?

What is one approach of “visually” representing alignment (that you’ve already seen in lab)?

Human1

GLKELLHGAV

Pig

GLRELLQGAV
Visualization – protein and DNA sequences

Step 1: write sequences along top row and left-most column

Human1 GLKELLHGAV
Pig GLRELLQGAV
Visualization – protein and DNA sequences

Human1: GLKELLHGA
Pig: GLRELLQGA

Step 1: write sequences along top row and left-most column
Visualization – protein and DNA sequences

Human1: GLKELLHGAV
Pig: GLRELLQGAV

Step 1: write sequences along top row and left-most column

Step 2: Identify rows/columns that are a match along the diagonal
Visualization – protein and DNA sequences

Human1 GLKELLHGAV
Pig GLRELLQGAV

Step 1: write sequences along top row and left-most column

Step 2: Identify rows/columns that are a match along the diagonal
Visualization – protein and DNA sequences

Human1 GLKELLHGAV
Pig GLRELLQGAV

Step 1: write sequences along top row and left-most column

Step 2: Identify rows/columns that are a match along the diagonal

Step 3: Identify all pair-wise letters that match
Visualization – protein and DNA sequences

Step 1: write sequences along top row and left-most column

Step 2: Identify rows/columns that are a match along the diagonal

Step 3: Identify all pair-wise letters that match
Visualization – protein and DNA sequences

Human1: GLKELLHGAV
Pig: GLRELLQGAV

Step 1: Write sequences along top row and left-most column

Step 2: Identify rows/columns that are a match along the diagonal

Step 3: Identify all pair-wise letters that match
Visualization – protein and DNA sequences

Devise of a dot-matrix(ish) approach for visually inferring the alignment of 3 sequences

In class worksheet exercise

<table>
<thead>
<tr>
<th>Sequence 1</th>
<th>Sequence 2</th>
<th>Sequence 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSVT</td>
<td>GSDT</td>
<td>WSWTW</td>
</tr>
</tbody>
</table>

For the below 3 sequences, use a dot-matrix approach to identify similar (based on amino acid) regions. Devise of a “scoring” scheme to identify high match (3 matches) from Medium match (2 matches) from Low match (no match).

<table>
<thead>
<tr>
<th>Sequence 1</th>
<th>SSVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence 2</td>
<td>GSDT</td>
</tr>
<tr>
<td>Sequence 3</td>
<td>WSWTW</td>
</tr>
</tbody>
</table>
Visualization – protein and DNA sequences

Other variants of matrix-ish approaches
Visualization using R, gnuplot, matlab, etc.