Data Set: 10,000 Movie Lens ratings from about 1,000 users, 2000 movies.
Rating Scale: 1, 2, 3, 4, or 5.
Toy user-item utility matrix

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Recommender was built using a Pearson correlation coefficient as a similarity metric between user rating vectors.

$$
c_{a, u}=\frac{\operatorname{covar}\left(r_{a}, r_{u}\right)}{\sigma_{r_{a}} \sigma_{r_{u}}}
$$

r_{q} and r_{u} are the ratings vectors for the m items rated by
both a and u
In practice a uniform distribution is assumed for ratings: Given a random movie a person is just as likely to rate that movie a $1,2,3,4$, or 5 . This assumption simplifies the equation. Now we can express it in a form that shows the significance of this metric in the present context:

Let $\mu_{x}=$ the average of ratings in $\mathbf{r}_{\mathbf{x}}$.
Calculation of Rating prediction

$$
\begin{aligned}
& \text { Let } \mathbf{r}_{\mathbf{x}}^{\prime}=\mathbf{r}_{\mathbf{x}}-\left[\begin{array}{c}
\mu_{x} \\
\vdots \\
\mu_{x}
\end{array}\right] . \\
& \text { Then, } c_{a, u}=\frac{\mathbf{r}_{\mathbf{a}}^{\prime} \cdot \mathbf{r}_{\mathbf{u}}^{\prime}}{\left\|\mathbf{r}_{\mathbf{a}}^{\prime}\right\|\left\|\mathbf{r}_{\mathbf{u}}^{\prime}\right\|} .
\end{aligned}
$$

$$
p_{a, i}=\bar{r}_{a}+\frac{\sum_{u=1}^{n} w_{a, u}\left(r_{u, i}-\bar{r}_{u}\right)}{\sum_{u=1}^{n}\left|w_{a, u}\right|}
$$

Which is just the cosign of the angle between our "normalized" ratings vectors (obtained by subtracting the mean rating of the vector from each rating in the vector). This gives a similarity score between -1 and 1 , where scores close to zero signify little correlation, scores closer to 1 signify that the two users rate items more similarly, and scores closer to -1 signify that the two users rate items more differently. A weight may be employed when constructing a metric to discount vectors with few entries.

The Recommender

```
DataModel model = new FileDataModel(new File("data/movies.csv"));
PearsonCorrelationSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1, similarity, model);//(threshold, sj
UserBasedRecommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
    int x = 1;
    for(LongPrimitiveIterator users = model.getUserIDs(); users.hasNext();) {
        long userId = users.nextLong();
        List<RecommendedItem> recommendations = recommender.recommend(userId, 5);
        System.out.println(userId + ": ");
        for (RecommendedItem recommendation : recommendations) {
        System.out.println(recommendation.getItemID() + "\t" + recommendation.getValue() + "\n");
    }
    x++;
    if (x>10) System.exit(1);
}
```


Sample Output

1:
15585.0
15005.0
14675.0
11895.0
12935.0

2 :
16435.0
14675.0
15005.0
12935.0
11895.0
$3:$
11895.0
15005.0
13025.0
13685.0
13984.759591

4:
$1104 \quad 4.7937207$
8534.729132
1694.655577
14494.60582
4084.582672

5 :
$1500 \quad 5.0$
12335.0
8515.0
11895.0
1195.0

6 :
14675.0
11895.0
12935.0
13984.8224106
15924.7151284

7:
15005.0
14675.0
12935.0
11895.0
11254.734744

8:
14675.0
12935.0
11895.0
16124.582285
1694.5788593

