Data Set: 10,000 Movie Lens ratings from about 1,000 users, 2000 movies.
Rating Scale: 1, 2, 3, 4, or 5.
Toy user-item utility matrix

HP1 HP2 HP3 TW SW1 SW2 SW3
A 1) 1
B)) 1
C 2 1)
D 3 3

Recommender was built using a Pearson correlation coefficient as a similarity metric between
user rating vectors.
_covar(r,,r,)
au
o, 0,
ry and r, are the ratings vectors for the m items rated by
both ¢ and u

In practice a uniform distribution is assumed for ratings: Given a random movie a person
is just as likely to rate that movie a 1, 2, 3, 4, or 5. This assumption simplifies the equation. Now we
can express it in a form that shows the significance of this metric in the present context:

Let pu, = the average of ratings in r,. ,) o
- Calculation of Rating prediction

"] :
Let vy =re— | & 1. w, (r,—T)
= =1
[MwJ pa,i - ra +- n
r, -1 Z| w |
Th L — & a,u
N AT

Which is just the cosign of the angle between our “normalized” ratings vectors (obtained by subtracting

the mean rating of the vector from each rating in the vector). This gives a similarity score between -1

and 1, where scores close to zero signify little correlation, scores closer to 1 signify that the two users

rate items more similarly, and scores closer to -1 signify that the two users rate items

more differently. A weight may be employed when constructing a metric to discount vectors with few entries.
The Recommender

DataModel model = new FileDataModel(new File("data/movies.csv"));

PearsonCorrelationSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new ThresholdUserNeighborhood(®.1, similarity, model);//(threshold, si
UserBasedRecommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);

int x = 1;
for(LongPrimitiveIterator users = model.getUserIDs(); users.hasNext();) {
long userId = users.nextLong(};
List<RecommendedItem= recommendations = recommender.recommend(userId, 5);
System.out.println(userId + ": "};
for (RecommendedItem recommendation : recommendations) {
System.out.println({recommendation.getItemID() + "\t" + recommendation.getValue() + "\n");
}

X+t
if (x=18) System.exit(1l);

Sample Output

1:

1558 5.0

1500 5.0

1467 5.0

1189 5.0

1293 5.0

2:

1643 5.0

1467 5.0

1500 5.0

1293 5.0

1189 5.0

3:

1189 5.0

1500 5.0

1302 5.0

1368 5.0

1398 4.759591
4:

1104 4.7937207
853 4.729132
169 4.655577
1449 4.60582
408 4.582672
5:

1500 5.0

1233 5.0

851 5.0

1189 5.0

119 5.0

6:

1467 5.0

1189 5.0

1293 5.0

1398 4.8224106
1592 4.7151284
7:

1500 5.0

1467 5.0

1293 5.0

1189 5.0

1125 4.734744
8:

1467 5.0

1293 5.0

1189 5.0

1612 4.582285
169 4.5788593

	Slide 1
	Slide 2

