
AN INTRODUCTION TO

NON-LINEAR OPTIMIZATION

NOTES FOR MATH/CS 435/535, WWU

Edition: Winter, 2015

Steve McDowall

Version: Monday 23rd February, 2015

2

Contents

1 Introduction 7

1.1 Examples . 7

1.2 Terminology . 11

1.3 Notation . 12

1.4 Mathematical Background . 13

2 Constrained Optimization 15

2.1 Constrained Optimization with equality constraints 15

2.1.1 Formulation . 15

2.1.2 A brief review of introductory multi-variable calculus and Lagrange
multipliers . 16

2.1.3 The Lagrange Multiplier Theorem . 19

2.2 Constrained Optimization with inequality constraints 27

2.2.1 Formulation . 27

2.2.2 The Karush-Kuhn-Tucker Theorem 28

2.3 Convexity and Optimization Problems . 42

2.3.1 Convexity and optimization . 42

2.3.2 Other characterizations of convexity 43

3

4 CONTENTS

2.3.3 Sufficiency of KKT for convex problems 47

2.4 Exercises . 50

3 Approximate Optimization 57

3.1 Introduction . 57

3.2 Line Searches . 58

3.2.1 Fixed step size . 58

3.2.2 Newton’s method . 60

3.2.3 Golden Section method. 61

3.2.4 Fibonacci search method. 66

3.3 Gradient Methods . 69

3.3.1 Introduction . 69

3.3.2 Steepest Descent Method . 70

3.3.3 Newton/Quasi-Newton Method . 76

3.4 Conjugate Gradient Methods . 82

3.4.1 Introduction . 82

3.4.2 The basic Conjugate Direction algorithm 83

3.4.3 The conjugate gradient algorithm – quadratic functions 85

3.4.4 The conjugate gradient algorithm – non-quadratic functions 87

3.5 Test functions . 88

3.6 Exercises . 93

4 Variational Problems 101

4.1 Introduction . 101

CONTENTS 5

4.2 Formulation and the Euler-Lagrange equation 104

4.3 Examples . 110

4.4 Natural Boundary Conditions . 119

4.5 Variational problems with integral constraints 122

4.5.1 A Hanging Cable example. 125

4.6 Exercises . 126

5 Optimal Control 131

5.1 Introduction . 131

5.2 The Hamiltonian . 132

5.2.1 Pontryagin’s Principle . 136

A Constant coefficient, linear, ordinary differential equations 141

A.1 Homogeneous ODE . 141

A.1.1 Second order, homogeneous . 141

A.1.2 Higher order, homogeneous . 143

A.2 Non-homogeneous ODE . 144

B Mathematical Background 147

B.1 Vector Space Notions . 147

B.2 Matrix Notions . 147

B.3 Inner Products and Norms . 148

B.4 Linear Transformations . 149

B.5 Quadratic Forms . 150

6 CONTENTS

B.6 Notions from Geometry . 151

B.7 Notions of Calculus . 152

Index 154

Chapter 1

Introduction

1.1 Examples

Constrained Optimization

1. Find the shortest ladder which can be leaned against a wall and have a box which is
a m wide and b m tall fit underneath it. Note that the constraint can be considered an
inequality constraint, though we can quickly argue that it could be changed to be an
equality constraint.

a

b

Figure 1.1: Shortest ladder problem.

2. A system of two scaffolds suspended by ropes is constructed, as in Figure 1.2 below.
Loads x1 and x2 are to be positioned according to x3 and x4. The ropes A and B can

7

8 CHAPTER 1. INTRODUCTION

bear no more than 300 kg each, C and D can bear 200 kg, and E and F can bear 100 kg.
Find the maximum load x1 + x2, and the corresponding positions x3, x4 that the system
can bear. Physically, the sum of the vertical forces on each scaffold must be zero; if TA
denotes the tension (force) in rope A (etc.) then, for example, for the middle scaffold it
must hold that

TC + TD = x1 + TE + TF .

But, further, the sum of the moments must also be zero. A moment is defined to be the
product of the force times the displacement (from any convenient choice of zero). Again,
for the middle scaffold, this would mean (taking the zero to be at the left hand end of the
scaffold)

10TD = x3x1 + 2TE + 10TF .

12

2

4

x1

x2

x3

x4

A B

C D

E F

Figure 1.2: Scaffold problem.

3. A consumer who consumes two goods x1 and x2 has a utility function (“happiness” func-
tion) u(x1, x2) = x1x2; if she has an income of I and the goods cost p1 and p2 then she
would like to maximize u subject to p1x1 + p2x2 ≤ I .

4. How should one divide their savings between three mutual funds with expected returns
of 8%, 10% and 15% so as to minimize the risk while achieving an expected return of
11%. The risk is determined by considering the variance of the returns of each fund; if
the funds are x, y and z, then the risk is found to be

r(x, y, z) = 400x2 + 800y2 + 200xy + 1600z2 + 400yz.

Approximate Optimization

More often than not, optimization problems are so big, or so complex, that applying a theo-
retically sound procedure to find the optimum is practically infeasible. In other situations, the

1.1. EXAMPLES 9

quantity we wish to optimize has no closed-form expression; it can only be evaluated point by
point. For these reasons we are interested in iterative algorithms which yield a sequence of
approximate solutions, which hopefully converges to the true solution.

5. What ellipsoid best approximates a box?

(a) Given a rectangle of dimensionsX×Y , what is the ellipse which best approximates
the rectangle? This is not a well-defined question as it stands, so to be more precise,
we wish to find the ellipse which minimizes the difference between the diameters of
the ellipse and the dimensions of the rectangle, and simultaneously minimizes the
difference between the areas of the ellipse and the rectangle. We can formulate this
as: find (x∗, y∗) which minimizes

F (x, y) =
(
x− 1

2
X
)2

+
(
y − 1

2
Y
)2

+
(
πxy −XY

)2
.

You will quickly discover that seeking the solution analytically is not tenable.
In particular, the “most pleasing” rectangle is the rectangle whose dimensions have
the ratio equal to the Golden ratio ϕ = (1+

√
5)/2. So let us find the “most pleasing”

ellipse by solving the above problem with X = ϕ and Y = 1.

(b) The three dimensional generalization of (a) is the following: Given a rectangular box
of dimensions X × Y × Z, find the ellipsoid with radii x, y and z which simulta-
neously minimizes the differences between the spatial dimensions and the volumes.
More specifically, find (x∗, y∗, z∗) which minimizes

F (x, y, z) =
(
x− 1

2
X
)2

+
(
y − 1

2
Y
)2

+
(
z − 1

2
Z
)2

+
(4

3
πxyz −XY Z

)2
.

6. In certain electronic devices, such as liquid crystal displays for example, the long axes of
molecules are aligned, to a certain extent, with a preferred direction, ~k say. The process
of alignment, however, is stochastic. Accordingly, there is a probability density function
(pdf) describing the distribution of θ, the angle between the axis of the molecule and ~k.
One would like to be able to determine what this pdf is, and thus determine how well the
molecules are aligned. Experimentally, one can measure either

(a) S2, the average (over many molecules) of P2(cos θ) =
3

2
cos2 θ − 1

2
, or

(b) S2 and S4, the average of P4(cos θ) =
35

8
cos4 θ − 15

4
cos2 θ +

3

8
.

The functions P2 and P4 are the 2nd and 4th degree Legendre polynomials. It must hold

that −0.5 ≤ S2 ≤ 1.0, and
35

18
S2

2 −
5

9
S2 −

7

18
≤ S4 ≤

5

12
S2 +

7

12
. An S2 value of 1 (or

close to 1) corresponds to very strong alignment with ~k; S2 = 0 indicates total random-
ness; and S2 = −0.5 corresponds to strong alignment within the plane perpendicular to

10 CHAPTER 1. INTRODUCTION

~k. Given these measurements, there is a principle (called maximum entropy) which deter-
mines the “most likely” pdf that the data came from. In case (a), this requires finding c2

so that

S2 =

∫ π

0

P2(cos θ) exp
[
c2P2(cos θ)

]
sin θ dθ∫ π

0

exp
[
c2P2(cos θ)

]
sin θ dθ

, (1.1)

in which case the pdf is

θ ∼
exp
[
c2P2(cos θ)

]∫ π

0

exp
[
c2P2(cos θ′)

]
sin θ′ dθ′

.

In case (b) this requires finding c2 and c4 so that

S2 =

∫ π

0

P2(cos θ) exp
[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ∫ π

0

exp
[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ

, and (1.2)

S4 =

∫ π

0

P4(cos θ) exp
[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ∫ π

0

exp
[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ

, (1.3)

and then

θ ∼
exp
[
c2P2(cos θ) + c4P4(cos θ)

]∫ π

0

exp
[
c2P2(cos θ′) + c4P4(cos θ′)

]
sin θ′ dθ′

.

Variational Problems

Here, instead of looking for an optimal vector ~x ∗ ∈ Rn we are looking for an optimal function
within some space/set of allowable functions.

7. The Brachistochrone Problem: a ball is to slide along a frictionless track from the
point (0, Y) to (X, 0) affected only by gravity. What shape should the track be so as to
minimize the time it takes? Here, the set of “allowable functions” will be ones for which
their graph goes through the specified points.

8. Design of a channel: We wish to design the shape of a channel which has prescribed
cross-sectional area A in such a way as to minimize the friction between the fluid flowing
in the channel and the walls of the channel. Assuming that the total friction is propor-
tional to the extent to which the fluid touches the walls, we wish to find the profile which
minimizes the arc-length P of the cross-section, as indicated in Figure 1.3

1.2. TERMINOLOGY 11

A

P

Figure 1.3: Channel

Dynamical Programming

These are discrete, sequential problems. For example, a traveler wants to get from city A to city
B and has a variety of routes which go through various other cities; she knows the “cost” of
traversing any given road between two joined cities and wants to find the “cheapest” route from
A to B.

Optimal Control

You may think of these problems as continuous versions of dynamical programming problems.
The continuous version of the example above might be the traveler can travel at a speed which
is a function of their position, and so we seek the curve they should follow so as to minimize
the time it takes to get to their destination. This is the principal that determines the path of light.

Example: Suppose we have a motorized vehicle whose movement we can control via its accel-
erator (u > 0) and brake (u < 0), and we are constrained by −a ≤ u ≤ b. What is the optimal
(fastest) acceleration/deceleration procedure to get the object from point A to point B, starting
and finishing at rest?

1.2 Terminology

• Objective function: the function f(~x), f : Rn → R which we want to optimize.

• Constraints: limitations/constraints on the independent variable ~x.

– Constraint function(s): the function h : Rn → Rm consisting of m functions
hj : Rn → R which describe the constraints.

– Feasible points: vectors ~x ∈ Rn which satisfy any constraints present.

• Local minimizer: a (feasible) vector ~x ∗ ∈ Rn for which there is ε > 0 such that f(~x ∗) ≤
f(~x) for all feasible ~x with |~x− ~x ∗| < ε.

12 CHAPTER 1. INTRODUCTION

• Global minimizer: a (feasible) vector ~x ∗ ∈ Rn for which f(~x ∗) ≤ f(~x) for all feasible
~x.

1.3 Notation

A lot of notation will simply be introduced as we need it. For starters:

• Vectors ~x ∈ Rn are considered to be columns. We write ~x =

x1

x2
...
xn

, or more efficiently

~x = [x1, x2, · · · , xn]T . In R3 we will often use ~x = [x, y, z]T .

• Vector inequalities: While it is arguably an abuse of notation, we will write ~u ≤ ~v to
mean that ui ≤ vi for each component i of the vectors ~u and ~v.

• The gradient vector for a function f : Rn → R at the point ~x is ∇f(~x) (and is itself a

column vector): ∇f(~x) =

∂f
∂x1

∂f
∂x2...
∂f
∂xn

.

• (See B.7.) One of the most important objects we will use throughout the term is the
differential of a vector valued function. If h : Rn → Rm, then Dh(~x) is an m×n matrix
(most easily remembered since also Dh : Rn → Rm) consisting of all the first order
derivatives of the component functions of h. Its rows are the transposes of the gradients:

Dh(~x) =

∇h1(~x)T

∇h2(~x)T

...
∇hm(~x)

 =

∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

· · · ∂h2
∂xn

...
...

∂hm
∂x1

∂hm
∂x2

· · · ∂hm
∂xn

 .
Note: for a scalar valued function f : Rn → R, the differential Df still makes sense; it is
simply Df(~x) = ∇f(~x)T . This is important to remember.

• An open ball of radius ε centered at ~x is denoted Bε(~x). Precisely,

Bε(~x) = {~y : |~x− ~y| < ε}.

• If S is a (hyper) surface in Rn and ~x ∈ S, then the tangent space to S at ~x is denoted T~xS.

• If A : V → W is a linear operator between vector spaces V and W , then

1.4. MATHEMATICAL BACKGROUND 13

1. by N (A) we mean the null-space of A, N (A) ⊂ V ;

2. byR(A) we mean the range of A,R(A) ⊂ W .

1.4 Mathematical Background

Appendix B contains a collection of mathematical concepts we will encounter through the
course. It’s expected that you know all the items referenced to either (204) or (224). How-
ever, we will “remind” ourselves of topics along the way – be sure to speak up if there are
things we are using which you do not properly understand! Other items will be addressed as we
need them.

At the beginning of each section there will be a list of items from the appendix which you
should review.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Constrained Optimization

2.1 Constrained Optimization with equality constraints

Review topics:

• matrices (B.2.1, B.2.4, B.2.6, B.2.9);

• dot product and norm (B.3.1, B.3.3, B.3.4);

• geometry in Rn (B.6.2);

• calculus in Rn (B.7.1, B.7.3, B.7.4, B.7.5, B.7.7, B.7.8, B.7.9, B.7.12)

Consider as a reference example:

EXAMPLE 2.1. Optimize f(x1, x2, x3) = 3x1x3 + 4x2x3 subject to x2
2 + x2

3 = 4 and x1x3 = 3.

Note: it is somewhat an abuse of notation to write f(~x) as f(x1, x2, x3); it should really be

written as f
(x1

x2

x3

) (which is clearly cumbersome), or f([x1, x2, x3]T). However, since there

is no likelihood of confusion, we will allow ourselves to write f(x1, x2, x3).

2.1.1 Formulation

Formulation of the problem:

Minimize f(~x) : Rn → R subject to h(~x) = ~0, where h : Rn → Rm.

15

16 CHAPTER 2. CONSTRAINED OPTIMIZATION

The function f is the objective function. The constraint h(~x) = ~0 is really m constraints
hj(~x) = 0 which must be satisfied simultaneously.

In the reference Example 2.1, f : R3 → R, h : R3 → R2,

h(~x) =

[
h1(~x)
h2(~x)

]
=

[
x2

2 + x2
3 − 4

x1x3 − 3

]

The above formulation includes the problem of maximization also: we can minimize−f to find
the maximum of f .

2.1.2 A brief review of introductory multi-variable calculus and Lagrange
multipliers

• We consider an objective function f : Rn → R; we wish to optimize f subject to a
collection of constraints. Constraints are zero-sets of functions. Depending on dimension,
these are level curves, level surfaces, or level hyper-surfaces.

• In Math 224, n = 2. It really only makes sense in this case to consider one constraint
curve. If there was more than one, then either they don’t intersect (then there is no fea-
sible set); or they intersect at a point (or finitely many points) in which case we can just
check these points; or they coincide over a curve, in which case there is really only one
constraint.

However, when n > 2, two surfaces can intersect in a curve, and two hyper-surfaces can
intersect in a surface (etc.).

Perpendicular to a (hyper-) surface. Recall (at least in dimensions n = 2, 3) that (non-zero)
gradient vectors are perpendicular to level curves, surfaces (hyper-surfaces). What does this
mean? For a level curve, this means it is perpendicular to the tangent line to the curve at the
point in question. For a level surface, the gradient vector is perpendicular to the tangent plane
to the surface at the point.

More precisely, let ~x ∗ be a point where h(~x ∗) = 0. To say that ∇h(~x ∗) is perpendicular to the
level set h(~x) = 0 at ~x ∗ means that if we take any smooth curve lying in the surface h(~x) = 0,
going through ~x ∗, then∇h(~x ∗) is perpendicular to the tangent vector to the curve at ~x ∗.

• Proof that gradient vectors are perpendicular to level sets. We must start with an arbi-
trary smooth curve in the level set h(~x) = 0 going through ~x ∗: suppose ~x(t) : (−ε, ε)→
Rn is a curve in h(~x) = 0 with ~x(0) = ~x ∗ (it goes through ~x ∗ at t = 0), and with
~x ′(0) 6= ~0. (Note: ~x ′(0) is the tangent vector of the curve at ~x(0), i.e. at ~x ∗.) Then

2.1. CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS 17

Figure 2.1: A tangent vector to a surface is a tangent vector to a curve which lies in the surface.

h(~x(t)) = 0 for all t, so by the chain rule (B.7.8),

0 =
d

dt
h(~x(t)) = ∇h(~x(t))T~x ′(t).

In particular,∇h(~x ∗) is perpendicular to ~x ′(0).

EXAMPLE 2.2. Let h(x, y) = x2 + y2 − 1, so S = {h(~x) = 0} is the unit circle in R2; let
~x ∗ = [

√
3/2, 1/2]T ∈ S. A family of parameterized curves ~x(t) lying in S is

~x(t) =
[
cos(αt+ π/6), sin(αt+ π/6)

]T
.

Indeed, ‖~x(t)‖ = 1 and ~x(0) = ~x ∗. Thus ~x ′(0) is a tangent vector to S at ~x ∗:

~x ′(0) = α[− sin(π/6), cos(π/6)]T = α[−1/2,
√

3/2]T .

(Varying α results in longer/shorter/reversed tangent vectors; all of them together give the whole
line tangent to S at ~x ∗ (translated to the origin).)

Now∇h(~x ∗) = [
√

3, 1]T and we see that∇h(~x ∗) · ~x ′(0) = 0 as claimed. (Note that this isn’t a
demonstration of the above proof, since we’ve taken some curves through the point, lying in S,
but not all curves!) �

Keeping with the case of a single constraint, now suppose that ~x ∗ is a minimizer of the con-
strained problem. Again let ~x(t) be a parameterized curve lying in S = {h(~x) = 0} as we
used in the proof above. Then f(~x(t)) must have a minimum at t = 0 (do you see why?), so by
single variable calculus (using the chain rule of multi-variable calculus),

0 =
d

dt
f(~x(t))

∣∣
t=0

= ∇f(~x(0))T~x ′(0) = ∇f(~x ∗)T~x ′(0)

18 CHAPTER 2. CONSTRAINED OPTIMIZATION

and we see that ~x ′(0) is also perpendicular to ∇f(~x ∗). (Recall from above that such an ~x ′(0)
is perpendicular to∇h(~x ∗).)

But now we have ∇f(~x ∗) and ∇h(~x ∗) orthogonal to the same vector – when the set S has
co-dimensions one (e.g. a surface in three dimensions) this means∇f(~x ∗) has to be a multiple
of ∇h(~x ∗); if the co-dimension of S is greater than one (e.g. a curve in three dimensions) then
this conclusion cannot be made.

This is Lagrange’s Theorem for m = 1: If ~x ∗ is a minimizer then there exists λ ∈ R such that

∇f(~x ∗) + λ∇h(~x ∗) = ~0.

• The constant λ is called the Lagrange multiplier. Its existence is a necessary condition,
but not a sufficient one.

EXAMPLE 2.3. Minimize f(x, y) = x− y subject to x2 + y2 − 1 = 0. We need[
1
−1

]
+ λ

[
2x
2y

]
=

[
0
0

]
⇒ 2λ(x+ y) = 0.

If λ = 0 we get a contradiction; thus x = −y and then 2x2 = 1, so x = ±1/
√

2 and the
candidates are [1/

√
2,−1/

√
2]T and [−1/

√
2, 1/
√

2]T . Evaluating, f(1/
√

2,−1/
√

2) = 2/
√

2
and f(−1/

√
2, 1/
√

2) = −2/
√

2. See Figure 2.3. �

EXAMPLE 2.4. Min/Maximize f(x, y) = x2 − 2xy + y2 subject to x2 + y2 = 16. One finds:
f(−2

√
2,−2

√
2) = 0, λ = 0; f(2

√
2, 2
√

2) = 0, λ = 0; f(−2
√

2, 2
√

2) = 32, λ = −2;
f(2
√

2,−2
√

2) = 32, λ = −2. Understand why we got λ = 0 in the two first cases by looking
at Figure 2.4. �

The meaning of λ when m = 1. As we will now see, the multiplier λ measures the instanta-
neous rate of change of the critical values of the objective function with respect to changes in
the constraint level. So, to see this, we re-cast the formulation slightly by writing the constraint
as h(~x) = c, so c = 0 is the constraint we have just considered above. Let ~x ∗ = ~x ∗(0) be the
minimizer of the constrained problem (if there is more than one, just pick one), and let λ be the
corresponding Lagrange multiplier. Now consider the family of constrained problems as we let
c vary (for values close to zero) and let ~x ∗(c) be the corresponding minimizers; we now view
~x ∗ as a function of c, that is, ~x ∗ : R → Rn. Let M(c) = f(~x ∗(c)) be the actual minimum
achieved there, the value of the objective function at the optimal point. We ask the question:
how is M changing as a function of c, near c = 0; i.e. by how much (approximately) will the
minimum increase or decrease as a result of increasing/decreasing the constraint h? To answer
this question we compute the derivative of M with respect to c, at c = 0:

dM

dc
(0) = Df(~x ∗(0))︸ ︷︷ ︸

1×n

D~x ∗(0)︸ ︷︷ ︸
n×1

= −λDh(~x ∗(0))︸ ︷︷ ︸
1×n

D~x ∗(0)︸ ︷︷ ︸
n×1

.

2.1. CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS 19

(a) Example 2.3. (b) Example 2.4.

Figure 2.2: Examples of single equality constrained optimization problems. Shown are the
constraint, level curves of the objective function, and the optimal points.

One must understand, in the above, thatDf(~x ∗(0)) is the differential with respect to the variable
~x (at ~x ∗(0)) and D~x ∗(0) is the differential with respect to the variable c (at c = 0). Now for ev-

ery c, h(~x ∗(c)) = c, so differentiating this, at c = 0, we obtain Dh(~x ∗(0))D~x ∗(0) =
d

dc
c = 1,

so
d

dc
M(0) = −λ.

You should return to the previous examples and Figures 2.2 to understand this result in the
context of those examples. In particular, notice that for the points where λ = 0 in Example 2.4,
changes in the constraint will, indeed, not change the minimal value of f .

2.1.3 The Lagrange Multiplier Theorem

We return to the original problem, as in Section 2.1.1.

THEOREM 2.5. Let ~x ∗ be a local minimizer of f : Rn → R subject to h(~x) = ~0, h : Rn → Rm,
m ≤ n. Assume that the rank of Dh(~x ∗) is m, maximal. Then there exists a (vector) multiplier
~λ ∈ Rm such that

Df(~x ∗) + ~λ TDh(~x ∗) = ~0 T . (2.1)

Remarks: (1.) Note that what (2.1) says is that the gradient vector of f (at ~x ∗) is in the span
of the gradient vectors of the constraint functions hj (at ~x ∗). This is most easily seen by taking
the transpose of (2.1).

20 CHAPTER 2. CONSTRAINED OPTIMIZATION

(2.) Why might we see this as reasonable? If we consider two (linear) constraints intersecting
in a line, then the span of the gradients of (assumed independent) hj is a plane perpendicular
to the line of intersection. If ∇f is not in this span, then there is a component of ∇f which is
along the line of intersection: we could move along this line, still satisfying the constraints and
decrease f . Thus we could not be at a minimizing point.

Tangent Spaces:

Key to the proof/understanding of Lagrange’s theorem in 2D was the fact that we took a curve
in the constraint set and differentiated it at ~x ∗. Now the constraint set is m-dimensional; we
need the notion of a tangent space (we discussed the tangent line when the constraint set was
one-dimensional).

DEFINITION 2.6. Given the constraint set S = {~x : h(~x) = ~0}, h : Rn → Rm, m ≤ n, we
define the tangent space T~x ∗S to S at ~x ∗ to be the set of derivatives of curves in S through ~x ∗

at ~x ∗. More precisely, a vector ~v is a tangent vector to S at ~x ∗ if, and only if, there exists a
curve ~x(t) : (−ε, ε)→ S with ~x(0) = ~x ∗ such that ~v = D~x(0) = ~x ′(0).

It is not difficult to show that T~x ∗S is a vector space. You should view it as the (affine) tangent
plane to S at ~x ∗ translated to the origin.

EXAMPLE 2.7. Consider the unit sphere S2, the set S2 = {h(~x) = x2 + y2 + z2 − 1 = 0}. If
~x ∗ ∈ S2, then T~x ∗S2 is the plane perpendicular to ~x ∗ (through the origin).

The relationship between tangent spaces and the differential of h:

Necessary notions: the nullspace of a matrix (B.4.5); the Jacobian, or differential (B.7.2).

When the surface for which we are trying to describe the tangent space is given as the level set
of a function (as it is here, h(~x) = ~0), then it holds that T~x ∗S ⊂ N (Dh(~x ∗)). This can be
understood as the set of vectors which are orthogonal to each of the rows of Dh(~x ∗), i.e. to
each of the gradients∇hj(~x ∗).

This is easy to see as follows: let ~v ∈ T~x ∗S, so there exists ~x(t), −ε < t < ε, a curve in S such
that ~x(0) = ~x ∗ and D~x(0) = ~x ′(0) = ~v. Then differentiating h(~x(t)) = ~0 at t = 0 we obtain

Dh(~x(0))D~x(0) = Dh(~x(0))~x ′(0) = ~0

which is precisely the statement ~v = ~x ′(0) ∈ N (Dh(~x ∗)).

Important Remark: In fact, if Dh(~x ∗) is full rank, then

T~x ∗S = N (Dh(~x ∗)), (2.2)

and we can use N (Dh(~x ∗)) as the definition of the tangent space. (Note this is stronger than
the inclusion shown above.) We will only be considering tangent spaces at points where the
rank is maximal and so we will have the equivalent descriptions of the tangent space.

2.1. CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS 21

EXAMPLE 2.8. If Dh(~x ∗) is not full rank, then N (Dh(~x ∗)) can be larger than the tangent
space to S. For example, let ~x ∗ = ~0 ∈ R3, h1(x, y, z) = z, and h2(x, y, z) = x3 + z. Then the

gradients at ~x ∗ are both [0, 0, 1]T . With h = [h1, h2]T , Dh(~x ∗) =

[
0 0 1
0 0 1

]
(which is clearly

not of full rank). The constraint set S is the set {h1 = 0, h2 = 0} which is the y-axis; the
tangent space to S at ~x ∗ is also the y-axis. But N (Dh(~x ∗)) is the whole xy-plane. �

We will need:

EXERCISE 2.9. If A is a matrix, prove that R(AT) = N (A)⊥ where, if V is a subspace,
V ⊥ = {~w : ~w is perpendicular to ~v for all ~v ∈ V }.

Proof of The Lagrange Multiplier Theorem. Now we are ready to prove (2.1): This is equiv-
alent to ∇f(~x ∗) = −Dh(~x ∗)T~λ, which says that ∇f(~x ∗) is in the range of Dh(~x ∗)T :
Rm → Rn. But by Exercise 2.9, R(Dh(~x ∗)T) = N (Dh(~x ∗))⊥ (B.4.6) and we just saw
N (Dh(~x ∗))⊥ = (T~x ∗S)⊥. Thus we must show ∇f(~x ∗) ∈ (T~x ∗S)⊥. For this, let ~v ∈ T~x ∗S
and ~x : (−ε, ε)→ S be such that ~x(0) = ~x ∗, ~x ′(0) = ~v. Now consider f(~x(t)). Since ~x ∗ is a
minimizer,

0 =
d

dt
f(~x(t))

∣∣
t=0

= Df(~x ∗)D~x(0) = Df(~x ∗)~v = ∇f(~x ∗)T~v

and indeed∇f(~x ∗) is perpendicular to ~v.

Once again, the Lagrange Multiplier Theorem gives a necessary condition; it need not be suffi-
cient.

EXAMPLE 2.10. We can use the example above to see why the full-rank condition is in the
hypothesis of the theorem. Let the objective function be f(x, y, z) = x+ z, and the constraints
be h1 = z, h2 = x3 + z. Then the feasible set S is the y-axis; f is constant on this set, so any
point is a minimizer, in particular ~0. But, at ~0 it is not true that there exists ~λ ∈ R2 such that
Df(~0)+~λ TDh(~0) = ~0 T . We see this sinceDf(~0) = [1, 0, 1] while ~λ TDh(~0) = [0, 0, λ1+λ2].

�

EXAMPLE 2.11. Minimize f(x1, x2) = x3
1 + x3

2 subject to x2
1 + x2

2 = 4. Lagrange’s theorem
guarantees that at a minimum there exists λ such that

3x2
1 + 2λx1 = 0 ⇒ x1(3x1 + 2λ) = 0

3x2
2 + 2λx2 = 0 ⇒ x2(3x2 + 2λ) = 0

x2
1 + x2

2 = 4.

We consider the four cases implied by the first two equations:
x1 = 0 :

• x2 = 0 : this contradicts the third equation;

22 CHAPTER 2. CONSTRAINED OPTIMIZATION

• x2 = −2λ/3 : the third equation gives λ = ±3 and then x2 = ∓2. We have

[0, 2]T , λ = −3, and [0,−2]T , λ = 3.

x1 = −2λ/3 :

• x2 = 0 : the third equation gives λ = ±3. We have

[2, 0]T , λ = −3, and [−2, 0]T , λ = 3.

• x2 = −2λ/3 : the third equation gives λ = ±3/
√

2 and x1 = x2 = ∓
√

2. We have

[
√

2,
√

2]T , λ = −3/
√

2, and [−
√

2,−
√

2]T , λ = 3/
√

2.

Evaluating the objective function at these locations,

f(0, 2) = f(2, 0) = 8, (maxima),

f(
√

2,
√

2) = 4
√

2, f(−
√

2,−
√

2) = −4
√

2, and,
f(0,−2) = f(−2, 0) = −8, (minima).

�

EXERCISE 2.12. Extend the above example to f(x1, x2, x3) = x3
1 + x3

2 + x3
3 subject to x2

1 +
x2

2 + x2
3 = 4.

EXAMPLE 2.13. (An objective function of three variables, with two constraints. This is the
original reference Example 2.1.) Optimize f(x, y, z) = 3xz + 4yz subject to y2 + z2 = 4 and
xz = 3. Figure 2.3 shows the constraint sets, and the optimal points found below. We need

[
3z 4z 3x+ 4y

]
+
[
λ1 λ2

] [0 2y 2z
z 0 x

]
=
[
0 0 0

]
.

So, 3z + λ2z = 0⇒ z = 0 or λ2 = −3 (z = 0 gives a contradiction). Then 4z + 2yλ1 = 0 and
4y + 2λ1z = 0 which together give y = ±z. Thus we obtain(3√

2
,
√

2,
√

2
)
,

(
− 3√

2
,−
√

2,−
√

2
)
,

(
− 3√

2
,
√

2,−
√

2
)
,

(3√
2
,−
√

2,
√

2
)

f = 17 f = 17 f = 1 f = 1

Note: at this point we might be tempted to conclude that the minimum is 1 and the maximum
is 17 (each achieved twice at the given locations). If the constraint set is compact (closed and
bounded in Rn) then this would be a correct conclusion. Here, however, the constraint set is
unbounded so we have to consider also what happens to f as we move to the unbounded part.
That is, what happens as x → ±∞? We can answer this by noticing that xz = 3, so in fact

2.1. CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS 23

Figure 2.3: (Example 2.13) the constraints and optimal points.

f(x, y, z) = 9 + 4yz; as x → ±∞, z → 0, so f → 9 which is between the values we found.
Thus it turns out 1 and 17 are the extrema.

In Figure 2.4, we zoom in on one of the optimal points and show: the constraint surfaces and
their sphere of intersection; the optimal point; and a patch of the level set of the objective
function through this points. What is important to see is that the constraint set (the curve of
intersection of the constraints) is tangent to the level set of the function. That is, moving in-
finitessimally along the constraint from an optimal point will not (instantaneously) change the
value of the objective function. Thus, it cannot be increased or decreased by moving along the
constraint. �

EXAMPLE 2.14. We consider the example of Exercise 2.12 but impose the additional constraint
x1 + x2 + x3 = 1. What is interesting about this example is that we can use the existence of λ1,
λ2 to derive the solution. The condition from Lagrange’s theorem requires

3x2
1 + 2λ1x1 + λ2 = 0

3x2
2 + 2λ1x2 + λ2 = 0

3x2
3 + 2λ1x3 + λ2 = 0.

24 CHAPTER 2. CONSTRAINED OPTIMIZATION

Figure 2.4: (Example 2.13) constraints and level sets of the objective function.

Mere existence of λ1, λ2 means that the matrixx2
1 x1 1
x2

2 x2 1
x2

3 x3 1

must have determinant zero because the equationx2

1 x1 1
x2

2 x2 1
x2

3 x3 1

 3
2λ1

λ2

 =

0
0
0

must have a solution, and it clearly cannot be [0, 0, 0]T . This matrix has a special form – it is
known as a Vandermonde matrix, and its determinant is known to be (x1−x2)(x1−x3)(x2−x3).
Now, for example, if x1 = x2 then the constraints become x3 = 1−2x1 and 2x2

1+(1−2x1)2 = 4,
or 6x2

1 − 4x1 − 3 = 0 which has solutions x1 = (2 ±
√

22)/6. The complete set of solutions
turns out to be[1

6

(
2−
√

22
)
,
1

6

(
2−
√

22
)
,
1

3

(
1 +
√

22
)]T [1

6

(
2−
√

22
)
,
1

3

(
1 +
√

22
)
,
1

6

(
2−
√

22
)]T

[1

6

(
2 +
√

22
)
,
1

6

(
2 +
√

22
)
,
1

3

(
1−
√

22
)]T [1

6

(
2 +
√

22
)
,
1

3

(
1−
√

22
)
,
1

6

(
2 +
√

22
)]T

.

The corresponding ~λ’s are (numerically) [−2.17,−2.55]T , [−2.15,−2.55]T , [0.17,−0.44]T ,
and [0.17,−4.11]T . The values of f at the four points are 6.64, 6.64, 0.91, 0.91. �

The meaning of ~λ. Once again, consider the constraints varying, h(~x) = ~c ≈ ~0 ∈ Rm.
Let ~x ∗(~0) be a minimizer of the constrained problem when ~c = ~0 and let the corresponding
minimizers (near ~x ∗(~0)) for general ~c be ~x ∗(~c) ∈ Rn. Let M : Rm → R be given by M(~c) =

2.1. CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS 25

Figure 2.5: (Example 2.14) the constraints and optimal points.

f(~x ∗(~c)), the values of the objective function at the minimizers ~x ∗(~c). Differentiating with
respect to ~c, at ~c = ~0,

DM(~0)︸ ︷︷ ︸
1×m

= Df(~x ∗(~0))︸ ︷︷ ︸
1×n

D~x ∗(~0)︸ ︷︷ ︸
n×m

= − ~λ T︸︷︷︸
1×m

Dh(~x ∗(~0))︸ ︷︷ ︸
m×n

D~x ∗(~0)︸ ︷︷ ︸
n×m

.

This time, h(~x ∗(~c)) = ~c, so (actually for all ~c)

Dh(~x ∗(~c))︸ ︷︷ ︸
m×n

D~x ∗(~c)︸ ︷︷ ︸
n×m

= Im×m.

Thus

DM(~0)︸ ︷︷ ︸
1×m

= − ~λ T︸︷︷︸
1×m

.

That is, the gradient of M at ~0 is −~λ. Now gradients always point in the directions of maxi-
mum increase, so to increase M the most rapidly we should change the constraint from h = ~0
to h = ~c, where ~c is (small and) in the direction of −~λ. Notice also that if ~c were a direc-
tion perpendicular to ~λ, then the minimum value (at the new minimizer) would not change
(instantaneously).

What this says is the rate of change of M in the direction of ~c/‖~c‖ is ∇M(~0) · ~c/‖~c‖ = −~λ ·
~c/‖~c‖. That is,

∆M

‖change in ~c‖
≈ −~λ · ~c

‖~c‖
⇒ ∆M ≈ −~λ · ~c.

26 CHAPTER 2. CONSTRAINED OPTIMIZATION

Figure 2.6: The constraint surfaces and optimal points for two sets of constraints. The blue
points are optimal for ~c = [0, 0]T ; the red points are optimal for ~c = [0.6, 0.8]T .

EXAMPLE 2.15. Consider Example 2.14 presented above. When we change the constraints
from

x2
1 + x2

2 + x2
3 − 4 = 0

x1 + x2 + x3 − 1 = 0
to

x2
1 + x2

2 + x2
3 − 4 = c1

x1 + x2 + x3 − 1 = c2

(or from h(~x) = ~0 to h(~x) = ~c), we obtain a sphere of a slightly different radius, and a plane
which has been shifted slightly. The optimal points also shift; in Figure 2.6, we have taken
~c = [c1, c2]T = [0.6, 0.8]T (much larger than realistic for instantaneous rates of change, but
better for illustration). The blue (lower) points are the optimal points for the original constraints
~c = [0, 0]T , the red for the new constraints ~c = [0.6, 0.8]T . If we pick one, say the “clos-

est” blue point ~x =
[1

6

(
2 +
√

22
)
,
1

3

(
1−
√

22
)
,
1

6

(
2 +
√

22
)]T

where f(~x) = 0.91 achieves
a minimum, then we can estimate by how much f changes in going to the corresponding red
point (here M represents the value of f at the minimum):

∆M ≈ −λ · ~c = −[0.17,−4.11]

[
0.6
0.8

]
= 3.186.

That is, if one were to change the constraints as described, our (linear approximation) estimate
of the new minimum would be 0.91 + 3.186 = 4.096 (the old minimum plus the estimate of the
change). Given how big ~c is, we might not be too confident in this estimate. It actually turns
out that the new minimum is 4.29, so our estimate isn’t too bad. �

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 27

2.2 Constrained Optimization with inequality constraints

2.2.1 Formulation

Formulation of the problem:

Minimize f(~x) : Rn → R subject to h(~x) = ~0, h : Rn → Rm and g(~x) ≤ ~0,
g : Rn → Rp.

Once again, g(~x) ≤ ~0 is in fact p inequality constraints gj(~x) ≤ 0, 1 ≤ j ≤ p.

Terminology: an inequality constraint gj ≤ 0 is said to be active (or binding) at ~x if in fact
gj(~x) = 0; if gj(~x) < 0 it is inactive (non-binding).

If ~x ∗ satisfies h(~x ∗) = ~0, g(~x ∗) ≤ ~0 then we define J(~x ∗) to be the set of indices j for which
gj is active at ~x ∗:

J(~x ∗) = {j : gj(~x
∗) = 0}.

EXAMPLE 2.16. The triangle has g1(x, y) = y + 2x − 2,
g2(x, y) = y − 2x− 2, g3(x, y) = −y.

~x ∗ = [0, 0.75]T : No constraints are active, J(~x ∗) = { };

~x ∗ = [0, 2]T : Only g1 and g2 are active, J(~x ∗) = {1, 2};

~x ∗ = [0.5, 1]T : Only g1 is active, J(~x ∗) = {1}.
-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5

2.0

2.5

EXAMPLE 2.17. Here, h(x, y) = y + 2x− 2,
g1(x, y) = y − 2x− 2, and g2(x, y) = −y.

~x ∗ = [0, 2]T : Only g1 is active, J(~x ∗) = {1};

~x ∗ = [0.5, 1]T : None of g1, g2 are active, J(~x ∗) = { }.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5

2.0

2.5

28 CHAPTER 2. CONSTRAINED OPTIMIZATION

2.2.2 The Karush-Kuhn-Tucker Theorem

When there are inequality constraints, the analog to Lagrange’s theorem is the Karush-Kuhn-
Tucker Theorem (KKT). Recall that we use ~µ ≥ ~ν to mean that for each component µj ≥ νj .

THEOREM 2.18. Let ~x ∗ be a point where {∇hi(~x ∗),∇gj(~x ∗) : 1 ≤ i ≤ m, j ∈ J(~x ∗)}
is a linearly independent set, and such that ~x ∗ is a local minimizer of f subject to h(~x) = ~0,
g(~x) ≤ ~0. Then there exist ~λ ∈ Rm and ~µ ∈ Rp such that

1. ~µ ≥ ~0,

2. Df(~x ∗) + ~λ TDh(~x ∗) + ~µ TDg(~x ∗) = ~0 T , and

3. ~µ Tg(~x ∗) = 0.

Maximization: In seeking the maximum of f subject to the same constraints, we will see that
we consider the same equations but with 1. replaced by ~µ ≤ ~0.

Important Observation: KKT 1. (~µ ≥ 0) and KKT 3. (~µ Tg(~x ∗) = 0) can be written in
another, more useful, way:

• Since we require g(~x ∗) ≤ 0, and ~µ ≥ 0, it certainly must hold that µjgj(~x ∗) ≤ 0 for each
j;

• if, for some j, µj > 0 then it must hold that the corresponding gj(~x ∗) = 0 (if not, then
µjgj(~x

∗) < 0 and it is then impossible for KKT 3. to hold);

• similarly, if, for some j, gj(~x ∗) < 0 then it must hold that the corresponding µj = 0 (for
the same reason).

Thus, KKT 3. can be replaced by the p conditions

µ1g1(~x ∗) = 0, µ2g2(~x ∗) = 0, . . . , µpgp(~x
∗) = 0.

A look at ~µ: as in the observation above, if for some j, gj(~x ∗) < 0, then µj = 0. That is, if
the j th inequality constraint gj is inactive then the corresponding µj = 0; it is only the active
constraints that may give rise to non-zero components of ~µ; again, it is only the j ∈ J(~x ∗) for
which µj may be non-zero. Note, however, that µj = 0 does not imply that the constraint gj is
necessarily inactive.

In fact, as becomes apparent in the proof of KKT, when a constraint is not active, it plays no
role, and any constraint that is active is an equality constraint as in Lagrange’s theorem. The
technical condition that {∇hi(~x ∗),∇gj(~x ∗) : 1 ≤ i ≤ m, j ∈ J(~x ∗)} be linearly independent

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 29

is simply the full-rank condition of Lagrange’s theorem, applied to the set of active constraints.
In the following two-dimensional example, we can see that the points found correspond to
places where the constraints are tangent to the level curves of the objective function.

EXAMPLE 2.19. We present an example before proceeding to the proof of the KKT theorem.
Consider optimizing f(x, y) = (x+2)2+(y+2.5)2 subject to x2+4y2 ≤ 16 and x+y ≤ 2. The
objective function is simply a parabolic bowl whose minimum is shifted to x = −2, y = −2.5.
The feasible set is shown in the picture below. Ignoring the sign of µj and feasibility for the
moment, we seek solutions to

2(x+ 2) + 2xµ1 + µ2 = 0

2(y + 2.5) + 8yµ1 + µ2 = 0

µ1(x2 + 4y2 − 16) = 0

µ2(x+ y − 2) = 0.

Without discussing how the solutions are found, one obtains:

~x = [0, 2]T , ~µ = [−0.31,−4]T ~x = [3.2,−1.2]T , ~µ = [−0.49,−7.28]T

~x = [−1.81,−1.78]T , ~µ = [0.1, 0]T ~x = [3.88, 0.49]T , ~µ = [−1.52, 0]T

~x = [−2,−2.5]T , ~µ = [0, 0]T ~x = [1.25, 0.75]T , ~µ = [0,−6.5]T

The points are shown in the figure below, together with some key contour curves of f :

-4 -2 2 4

-3

-2

-1

1

2

• At [0, 2]T and [3.2,−1.2]T , ~µ < ~0 – both constraints are active, and moving off either one
of them into the feasible region decreases f . The negative sign of ~µ discards these points
for the minimization problem; they are (potentially) optimal only for the maximization
problem.

• At [−1.81,−1.78]T we have µ = [0.1, 0]T – only the elliptical constraint is active. Mov-
ing off this constraint into the feasible region increases f . The fact that ~µ ≥ ~0 keeps this
point as potentially optimal for minimization.

30 CHAPTER 2. CONSTRAINED OPTIMIZATION

• At [3.88, 0.49]T , ~µ = [−1.52, 0]T – again only the elliptical constraint is active but now
moving off this constraint into the region allowable by this constraint decreases f . If this
were a feasibly point, it would be (potentially) optimal for maximizing f . However, it is
not feasible.

• At [−2,−2.5]T we are at a critical point of f . Looking at equation 2. of KKT, this clearly
occurs if ~µ = ~0, as in the case here. However, [−2,−2.5]T is not feasible.

• At [1.25, 0.75]T , ~µ = [0,−6.5]T – only the linear constraint is active, and the sign of µ2

indicates that it is (potentially) a point of maximum. We see that, indeed, moving into
the feasible region from here will decrease f . It might appear that it is possible to move
into the feasible region in such a way as to increase f , but it is important to remember
that Lagrange’s Theorem (and KKT) are based on first derivatives of f and the constraint
functions; KKT cannot “see” the fact that the level curve of f curves away from the
constraint at this point.

�

As we proceed to the proof of KKT, consider an example where h is absent, g1 describes the
unit disk centered at (0, 0) and g2 describes the unit disk centered at (1, 0); let ~x ∗ be at (1, 0)
say. In Figure 2.7, the feasible set is the shaded region, together with its boundary, the bold
arcs.

Figure 2.7: Illustrative example for the proof of KKT.

Proof of KKT, Step 1:

Let U be the feasible set; let

Û = {~x : h(~x) = ~0; gj(~x) = 0, j ∈ J(~x ∗); gk(~x) < 0, k 6∈ J(~x ∗)}.

In words, Û is the part of the feasible set in which the active constraints are changed to be
equality constraints. In the example, Û is the part of the circle centered at (0, 0) which is inside

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 31

Figure 2.8: The active constraint is considered as an equality constraint.

the disk centered at (1, 0). In Figure 2.8, it is the bold arc. Notice that for ~x ∗, g1 is active, but
g2 is inactive. Certainly ~x ∗ ∈ Û . Since gk(~x) < 0 is an “open” condition, there is ε > 0 such
that gk(~x) < 0 for all x ∈ Bε(~x

∗), k 6∈ J(~x ∗) and such that f(~x ∗) is minimal on Û ∩ Bε(~x
∗).

Now set

Ũ = {~x : h(~x) = ~0; gj(~x) = 0, j ∈ J(~x ∗)} ∩Bε(~x
∗) = Û ∩Bε(~x

∗) ⊂ Û .

Certainly ~x ∗ is a local minimizer of f on Ũ .

In the example, the point is that not only is g2 inactive at ~x ∗, but g2 is inactive in a neighborhood
of ~x ∗. Ũ is shown in Figure 2.9 below – it is the intersection of the bold arc with a ball around
~x ∗ which is small enough to stay away from the inactive constraint. Within the bold arc, the

Figure 2.9: Only the active constraint(s) are relevant.

constraint g2 can simply be forgotten!

It is instructive to think of the same example but in three dimensions. Replace g1 by g1 =
x2

1 + x2
2 + x2

3 and g2 by g2 = (x1 − 1)2 + x2
2 + x2

3, and let ~x ∗ = [1, 0, 0]T . Now the feasible
set is the intersection of the two unit balls; the set Û is now the part of the unit sphere centered
at ~0 which intersects the unit ball centered at [1, 0, 0]T , and Ũ is a small curved disk within this
surface, close to ~x ∗.

32 CHAPTER 2. CONSTRAINED OPTIMIZATION

Proof of KKT, Step 2:

We have just proven that ~x ∗ is a local minimizer of the equality constrained problem where
we consider only the active constraints. Thus we can apply the Lagrange multiplier theorem to
conclude there exists (~λ, ~µ) ∈ Rm × Rp (we simply set µk = 0 for k 6∈ J(~x ∗)) such that

Df(~x ∗) + ~λ TDh(~x ∗) + ~µ TDg(~x ∗) = ~0 T .

Note that we have ~µ Tg(~x ∗) = 0 since for each j, either gj(~x ∗) = 0 when j ∈ J(~x ∗) or µj = 0
when j 6∈ J(~x ∗).

Proof of KKT, Step 3:

We must show that µj ≥ 0 for j ∈ J(~x ∗). This is significantly more difficult and is where
KKT differs from Lagrange’s theorem. Th idea of the proof is: if there exists a µj < 0 then we
can show there must exist a direction in which we can move (instantaneously) from ~x ∗ which
remains feasible, but for which f is (again, instantaneously) decreasing. This cannot be true is
~x ∗ is a local minimum.

To illustrate this we consider an example with three inequality constraints: g1 gives the inside
of the sphere of radius 1 centered at [0, 0, 0]T , g2 the same centered at [1, 0, 0]T and g3 the same
centered at [1/2, 0,−1]T . The feasible set U is shown in Figure 2.10 below. The local minimum
shown is at ~x ∗ ≈ [0.99, 0,−0.13]T . The set J(~x ∗) is J(~x ∗) = {1, 3}. We prove the claim by

Figure 2.10: The feasible region satisfying three inequality constraints and an optimal point ~x ∗.

contradiction. Suppose (without loss of generality) that µ1 < 0. We define the surface

Ŝ = {~x : h(~x) = ~0, gj(~x) = 0, j ∈ J(~x ∗), j 6= 1} ∩ U.

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 33

This is the part of the feasible set containing ~x ∗ corresponding to the active constraints other
than the one for which we assume the sign of µ is incorrect. In our example, it is part of the
constraint g3 = 0 and is shown in Figure 2.11. Now consider the corresponding tangent space

Figure 2.11: The feasible part of constraint g3 = 0.

T~x ∗Ŝ, which, as we saw earlier, can be described as the null-space of appropriate derivatives:

T~x ∗Ŝ = {~v : Dh(~x ∗)~v = ~0, Dgj(~x
∗)~v = 0, j ∈ J(~x ∗), j 6= 1}. (2.3)

In our example, T~x ∗Ŝ is the set of vectors perpendicular to∇g3.

Step 3.1. Claim: There must exist ~v ∈ T~x ∗Ŝ such that Dg1(~x ∗)~v 6= 0. This is equivalent
to saying there is a direction in T~x ∗Ŝ which is not tangent to the surface g1(~x ∗) = 0. In our
example, we see this easily in Figure 2.13. To prove the claim, suppose otherwise, suppose that
Dg1(~x ∗)~v = 0 for all ~v ∈ T~x ∗Ŝ then∇g1(~x ∗) ∈ (T~x ∗Ŝ)⊥. But this implies

∇g1(~x ∗) ∈ span{∇hi(~x ∗), i = 1, . . . ,m, ∇gj(~x ∗), j ∈ J(~x ∗), j 6= 1}

which contradicts the assumption that the full set of gradient vectors forms a linearly inde-
pendent set. Thus there must exist such a ~v with Dg1(~x ∗)~v 6= 0; we can take ~v so that
Dg1(~x ∗)~v < 0 (if necessary, simply take −~v).

Remark: This says that ~v is a direction in which g1 decreases (from ~x ∗), and since g1(~x ∗) = 0,
moving in this direction yields g1 ≤ 0, and so is in a direction which remains within the feasible
set.

34 CHAPTER 2. CONSTRAINED OPTIMIZATION

Figure 2.12: The tangent plane to g3 = 0 at ~x ∗.

Step 3.2. We have (from KKT)

Df(~x ∗) + ~λ TDh(~x ∗) + µ1Dg1(~x ∗) +

p∑
j=2

µjDgj(~x
∗) = ~0 T .

We multiply on the right by our ~v ∈ TŜ(~x ∗). Looking at (2.3) we see that Dh(~x ∗)~v = 0, and
for each j > 1, either µj = 0 (if the constraint is inactive) or Dgj(~x ∗)~v = 0. Thus we obtain

Df(~x ∗)~v = −µ1Dg1(~x ∗)~v < 0

since Dg1(~x ∗)~v < 0 and µ1 < 0. But this means there is a direction tangent to Ŝ in which f
is decreasing. Thus we can decrease f within the feasible set Ŝ and so ~x ∗ cannot be a local
minimum.

This concludes the proof of KKT. �

EXAMPLE 2.20. A simple example with only one equality and one inequality constraint, both
of which are linear: minimize f(x, y) = (x− 1)2 + y − 2 subject to h(x, y) = y − x− 1 = 0,
g(x, y) = x+ y − 2 ≤ 0.

Here Dh(~x) = [−1, 1] and Dg(~x) = [1, 1] which are always linearly independent. KKT, plus

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 35

Figure 2.13: A direction in which the objective function decreases within the feasible set.

feasibility, becomes

[2x− 2− λ+ µ, 1 + λ+ µ] = ~0 T

µ(x+ y − 2) = 0

µ ≥ 0

y − x− 1 = 0

x+ y − 2 ≤ 0.

The general approach is to consider the system of equalities and then check solutions to that
system in the inequalities. We see that either µ = 0 or g(~x) = x+ y − 2 = 0. If g(~x) = 0, then
we require

2x− 2− λ+ µ = 0

1 + λ+ µ = 0

y − x− 1 = 0

x+ y − 2 = 0

to which we find the solution has µ = 0, so in fact both cases are treated at the same time: with
µ = 0, we have

2x− 2− λ = 0

1 + λ = 0

y − x− 1 = 0

36 CHAPTER 2. CONSTRAINED OPTIMIZATION

yielding x = 1/2, y = 3/2, λ = −1. We have to check feasibility: it is satisfied here since
g(~x) = 0. See Figure 2.14. We should also consider the fact that the feasible set is unbounded
and so see what happens as (x, y) → (−∞,−∞). Since y − x − 1 = 0, we can substitute
y = x + 1 into f to obtain (x − 1)2 + (x − 1) = (x − 1)x which clearly goes to infinity as
x→ −∞. Thus the point found is the minimum. �

-10

1

2

3

-1.0 -0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 2.14: (Example 2.20) level sets of the objective function, the inequality constraint
(shaded), the feasible set (the thick line), and the optimal point.

EXAMPLE 2.21. Minimize f(x, y) = −3x+
1

2
y2 subject to x2 + y2− 1 ≤ 0, x ≥ 0, y ≥ 0. We

re-write the inequality constraints as −x ≤ 0, and −y ≤ 0. Then KKT reads

−3 + 2xµ1 − µ2 = 0 (2.4)
y + 2yµ1 − µ3 = 0 (2.5)
µ1(x2 + y2 − 1) = 0 (2.6)

µ2x = 0 (2.7)
µ3y = 0 (2.8)
~µ ≥ 0, (2.9)

plus feasibility. By (2.6), µ1 = 0 or x2 + y2 = 1.

If µ1 = 0 then by (2.4), µ2 = −3 which contradicts (2.9).

If x2 + y2 = 1 , then by (2.7) either µ2 = 0 or x = 0.

• If µ2 = 0 then by (2.8) either µ3 = 0 or y = 0.

– If µ3 = 0 then (2.5) ⇒ y(1 + 2µ1) = 0. If 1 + 2µ1 = 0 then µ1 < 0 which
contradicts (2.9). Thus y = 0, and then since x2 + y2 = 1, x = ±1.

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 37

When x = 1, (2.4) ⇒ µ1 =
3

2
, and so [1, 0]T is a candidate (it is feasible and has

~µ =
[3
2
, 0, 0

]T).

x = −1 is not feasible.

– If y = 0 then x = ±1, which we have already considered in the last case.

• If x = 0 then (2.4)⇒ µ2 = −3 which contradicts (2.9).

Thus, the only candidate is [1, 0]T , where f(1, 0) = −3. It is interesting to interpret the answer
in terms of the active/inactive constraints. Despite the fact that µ3 = 0, the constraint y ≥ 0
is still active (we remarked earlier that while inactive implies the corresponding µ = 0, the
converse need not be true); the constraint x2 +y2−1 ≤ 0 is also active, that is, x2 +y2−1 = 0.
What, then, does it mean that µ3 = 0? While the constraint is, technically, active, it is playing
no role (one might argue that it is really “not active”). The gradient of f at [1, 0]T is∇f(1, 0) =
[−3, 0]T which is tangent to the constraint y = 0, so this constraint is playing no role; if it
weren’t for the other constraint (x2 +y2 ≤ 1), we could decrease f by moving further out along
the x-axis. See Figure 2.15. �

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-0.2 0.2 0.4 0.6 0.8 1.0 1.2

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2.15: (Example 2.21) level sets of the objective function, the feasible set, and the optimal
point.

Example 2.21 above was certainly manageable by hand, but it is believable that the system
of equations one needs to solve can easily become unmanageable. We consider here how to
use the symbolic computation ability of Mathematica to help us. The basic function we use
is Solve[]. This example is simple enough that we can ask Mathematica to solve the full
system, as follows: (See the Mathematica notebook “Constrained Ex 2-21.nb”)

38 CHAPTER 2. CONSTRAINED OPTIMIZATION

results = { x, y, µ1, µ2, µ3 } /.
Solve[{
-3 + 2x µ1 - µ2 == 0,
y + 2y µ1 - µ3 == 0,
µ1(x∧2 + y∧2 - 1) == 0,
x µ2 == 0,
y µ3 == 0,
µ1 >= 0,
µ2 >=0 },
{ x, y, µ1, µ2, µ3 }]

Coding notes:

• Solve[x∧2 == 4, x] returns the list of replacement rules, { {x -> 2}, {x
-> -2} }. Putting x /. { {x -> 2}, {x -> -2} } causes application of these
replacements, resulting the list { 2, -2 }. This explains the replacement command in
the above code.

• Use of a single = causes assignment; use of double == causes testing of equality and
returns either True or False.

The above code returns a single set of solutions: {{1, 0, 3/2, 0, 0}}. You will notice
that there is no test for feasibility of the point(s) found. This test could be included as further
inequalities, or we can now check by hand (or using Mathematica) which, if any, of the found
solutions are feasible. We also need to evaluate the objective function at the places found to see
which is optimal. All these steps could be built into the above code, but it is advisable not to try
to do too much in one step. Indeed, in more complicated examples, you might find the system
is too much for Mathematica to handle in this full form. Progress can still be made by asking
Mathematica to do less at the first step. For example, a good option is to first solve without any
inequalities as in:

results = { x, y, µ1, µ2, µ3 } /.
Solve[{
-3 + 2x µ1 - µ2 == 0,
y + 2y µ1 - µ3 == 0,
µ1(x∧2 + y∧2 - 1) == 0,
x µ2 == 0,
y µ3 == 0,
{ x, y, µ1, µ2, µ3 }]

This results in invalid solutions, such as complex valued solutions, and vectors ~µ < ~0. Thus,
we must post-process the solutions to remove unwanted ones. The command below first keeps
only those solutions which are real-valued:

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 39

realresults = Cases[results, ?(Element[#, Reals]&)]

Here Cases[list, ?(test function)] keeps only those elements of list which
pass the test function. This test function must be a pure function – see below. The
test here is whether the element of list is real; Element[#, Reals]& returns True if #
is real.

Pure functions: the way to encode a pure function in Mathematica is to use # as the variable
(the fact that it is un-specified is what makes the function a pure function – any variable can take
the place of #) and to follow the definition with &. For example #∧2& is the pure “squared”
function. It is shorthand for Function[#∧2]. This long-hand version actually allows you
to use temporary variables, for example Function[{x, y}, x∧2 + y∧2] is a pure
function. The short-hand version of this would be (#1∧2 + #2∧2)&.

We still have to remove solutions which have ~µ < ~0 (if we are looking for minima). To do this
we can use:

newresults =
DeleteCases[realresults, ?(Min[Take[#, {3, 5}]]<0&)]

Here, Take[#, {3, 5}] extracts elements 3 through 5 (those corresponding to ~µ). Next,
Min[] returns the minimum of these elements 3 through 5. Finally, DeleteCases[list,
?(test function)] removes any elements which satisfies the test. Thus we remove any

elements for which at least one of the µj is negative.

EXAMPLE 2.22. (An example from Pedregal, “Introduction to Optimization”.) Minimize

f(x1, x2, x3) = x3 +
1

2

(
x2

1 + x2
2 +

1

10
x2

3

)
subject to x1 + x2 + x3 = r, xi ≥ 0. Assume r > 0. KKT gives:

x1 − µ1 + λ = 0 (2.10)
x2 − µ2 + λ = 0 (2.11)

1 +
1

10
x3 − µ3 + λ = 0 (2.12)

µ1x1 = µ2x2 = µ3x3 = 0 (2.13)

~µ ≥ ~0 (2.14)
−xj ≤ 0, j = 1, 2, 3 (2.15)

x1 + x2 + x3 − r = 0. (2.16)

x1 = 0 :

• x2 = 0 :

– x3 = 0 : contradicts (2.16).

40 CHAPTER 2. CONSTRAINED OPTIMIZATION

– µ3 = 0 : ⇒ x3 = r⇒ µ1 = µ2 = λ = −1− r/10; contradicts (2.14).

• µ2 = 0 :

– x3 = 0 : ⇒ x2 = r, λ = µ1, x2 = −λ, which together imply µ1 = −r; contradicts
(2.14).

– µ3 = 0 : ⇒ λ = µ1, x2 = −λ, which together give µ1 = −x2 ≤ 0⇒ µ1 = x2 = 0
which we have already dealt with.

µ1 = 0 :

• x2 = 0 :

– x3 = 0 : this is equivalent to x1 = µ2 = 0, x3 = 0 above.

– µ3 = 0 : this is equivalent to x1 = µ2 = 0, µ3 = 0 above.

• µ2 = 0 :

– x3 = 0 :⇒ x1 = x2 = −λ, µ3 = 1+λ and x1 +x2 = r which gives x1 = x2 =
r

2
;

we find λ = −r
2

and then µ3 = 1− r
2

. In order to satisfy (2.14), we thus need r ≤ 2.

For such r, this yields the candidate ~x =
[r

2
,
r

2
, 0
]T

, with p(~x) =
1

4
r2 ;

– µ3 = 0 : ⇒ x1 = x2 = −λ, 1 + x3/10 = −λ and x1 + x2 + x3 = r. This

gives ~x =
[r + 10

12
,
r + 10

12
,
10(r − 2)

12

]T
. Notice this can only hold for r ≥ 2 for

otherwise we would fail x3 ≥ 0. We have p(~x) =
1

24
(−20 + 20r + r2) .

So, for any r > 0 we have a unique minimizer (the two coincide when r = 2). The nature of
the solution changes from being on the x1x2−plane and on x1 + x2 + x3 = r for r ≤ 2 (the
constraint x3 ≥ 0 is active) to being on x1 +x2 +x3 = r with the inequality constraints inactive
for r ≥ 2. This is demonstrated graphically in Example 2.23 below, for a lower dimensional
case. �

EXAMPLE 2.23. A lower dimensional example of the above is to consider: minimize

f(x1, x2) = x2 +
1

2

(
x2

1 +
1

10
x2

2

)

2.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS 41

subject to x1 + x2 = r, xi ≥ 0. Assume r > 0. KKT gives:

x1 − µ1 + λ = 0

1 +
1

10
x2 − µ2 + λ = 0

µ1x1 = µ2x2 = 0

~µ ≥ ~0
−xj ≤ 0, j = 1, 2

x1 + x2 − r = 0.

Solving this system of equations yields (in a manner similar to Example 2.22) optimal point

~x ∗ = [r, 0]T for r ≤ 1 and ~x ∗ =
[10 + r

11
,
10(r − 1)

11

]
for r ≥ 1 (r = 1 is the transition value

for this problem). Looking at Figure 2.16, we see that the nature of the solution changes. For
r ≤ 1, the minimum occurs on the active constraint x2 = 0; for r ≥ 1, the minimum occurs at
a location where the constraint is tangent to the level curve of f . �

Figure 2.16: For Example 2.23, feasible sets (the line segments) and locations of the optimal
points for r = 0.5, 0.7, 1.7, 1.75, 2.5, and the level curves of the objective function.

Example 2.22 above introduces difficulties when using Mathematica to find solutions, due to
the presence of the parameter r. Having produced the list results as in the code below
Example 2.21, we first remove any complex valued elements – the difficulty is that Mathematica
doesn’t know that r is real-valued. We can use Simplify[] together with Assuming[]
as follows: (See the Mathematica notebook “Constrained Ex 2-22.nb”)

42 CHAPTER 2. CONSTRAINED OPTIMIZATION

realresults =
Cases[results, ?(
Assuming[r>0,
Simplify[Element[#, Reals]]]&)

]

Next, we want to remove any negative ~µ’s. Again, we use Simplify[] together with
Assuming[]:

DeleteCases[realresults,
?(Assuming[r>0, Simplify[Min[Take[#, {5, 7}]]<0]]]&)

]

Note that {5, 7} corresponds to the ordering {x1, x2, x3, λ, µ1, µ2, µ3 }.

2.3 Convexity and Optimization Problems

When the feasible set is unbounded, there may not exist a global (or even) local minimum. To
know whether Lagrange’s theorem, or KKT, has provided a minimum then requires analyzing
the behavior of the objective function “at infinity” which can be a difficult task. Furthermore,
it is sometimes not clear whether a given feasible set is bounded or not. To overcome these
problems, we wish to provide some sufficient conditions for KKT to guarantee that we have a
minimum/maximum. Convexity provides this.

2.3.1 Convexity and optimization

For functions of one variable: the necessary condition for a differentiable function to have a
minimum at x∗ is f ′(x∗) = 0. This is KKT in dimension one. How about sufficient conditions?

• If f(x) → ∞ as x → ±∞, then f ′(x) = 0 has at least one solution; at least one of the
solutions must correspond to the global minimum of f .

• If f ′′(x) > 0 for all x, then f is strictly convex (concave up) and f ′(x) = 0 can have at
most one solution.

If we can (somehow) guarantee both of these, then the unique solution to f ′(x) = 0 gives the
global minimum.

Convex sets: (B.6.1, B.6.5.) A set K in Rn is convex if whenever ~x, ~y ∈ K it holds that

t~x+ (1− t)~y ∈ K for all 0 ≤ t ≤ 1.

2.3. CONVEXITY AND OPTIMIZATION PROBLEMS 43

Geometrically, this says that if ~x and ~y are in K then so too is the entire straight line-segment
joining ~x to ~y.

Convex functions: f : K ⊂ Rn → R is a convex function if K is convex and

f(t~x+ (1− t)~y) ≤ tf(~x) + (1− t)f(~y), 0 ≤ t ≤ 1. (2.17)

We say f is strictly convex if the inequality is strict.

x yt x + H1 - tL y

f HxL

f HyL
t f HxL + H1 - tL f HyL

f Ht x + H1 - tL yL

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.17: Graphical representation of the definition of convexity of a function.

EXERCISE 2.24. If f : K ⊂ Rn → R is a convex function, show that the set lying above the
graph of f is a convex set. This explains the terminology.

THEOREM 2.25. If f : K ⊂ Rn → R is convex, then ~x ∗ is a local minimizer for f if, and only
if, it is a global minimizer on K.

Proof. The “if” is obvious. Now suppose that ~x ∗ is a local minimizer, so there is ε > 0 such that
f(~x ∗) ≤ f(~x) for all ~x ∈ Bε(~x

∗)∩K. Now let ~y ∈ K be arbitrary. For all 0 ≤ t ≤ ε/‖~x ∗−~y‖,
(1− t)~x ∗ + t~y ∈ Bε(~x

∗) and by convexity,

f(~x ∗) ≤ f(
(
1− t)~x ∗ + t~y

)
≤ (1− t)f(~x ∗) + tf(~y) ⇒ tf(~x ∗) ≤ tf(~y).

Taking t > 0 yields the result.

2.3.2 Other characterizations of convexity

If f is differentiable, we can characterize convexity in easier ways. We need the notion of
positive definiteness of a quadratic form, and of a matrix – see B.5. A quadratic form is a
function f : Rn → R which can be written in the form f(~x) = ~x TQ~x, where we can assume

44 CHAPTER 2. CONSTRAINED OPTIMIZATION

that Q is a symmetric, real-valued, n × n matrix. The quadratic form is said to be positive
definite if f(~x) > 0 for all ~x 6= ~0, and positive semi-definite if f(~x) ≥ 0 for all ~x (see B.5.1).
We carry these definitions over to the matrix Q itself. There are various ways to determine the
definiteness of a matrix. See B.5.2, B.5.3 and B.5.5.

PROPOSITION 2.26. Let f : K ⊂ Rn → R with K convex and open. (“Open” means, loosely,
that K does not include a boundary. See B.6.7 for a precise definition.)

1. If f ∈ C1 (B.7.7) then f is convex iff

f(~y) ≥ f(~x) +Df(~x)(~y − ~x), for all ~x, ~y ∈ K. (2.18)

2. If f ∈ C2 then f is convex iff D2f(~x) is positive semi-definite (B.5) at all ~x ∈ K.

Remarks:

• D2f is the Hessian matrix of second derivatives of f ; it is symmetric if f ∈ C2 for then
the mixed partial derivatives are independent of the order of differentiation.

• Condition 1. has an informative geometric meaning: in dimensions n = 1, 2, it says that
the graph of f lies above the tangent line/plane based at any point. For higher dimensions,
the same is true but for the tangent hyperplane.

• Condition 2. is a generalization of “concave up.” We’ve actually seen something similar
to this before in Math 224: recall the second derivative test:

fxx(~x)fyy(~x)− fxy(~x)2 = det

[
fxx(~x) fxy(~x)
fxy(~x) fyy(~x)

]
= det D2f(~x).

Now if this is positive, and fxx (or fyy) is positive, then we know there is a “point of
minimum,” i.e. the function is convex there! Notice that fxx and det D2f(~x) are the
determinants of the leading principal minors (see B.5.2). If these are strictly positive, then
Sylvester’s criterion (B.5.2) guarantees that D2f(~x) is positive definite. When D2f(~x) is
positive definite, then Condition 2. is a direct generalization of the second derivative test
to higher dimensions; for ~x where D2f(~x) is only positive semi-definite, we don’t have
Sylvester’s criterion making the connection to the second derivative test.

Proof of Part 1. of Proposition 2.26. 1.1. (⇒) For any ~x, ~y ∈ K we define the unit vector

~u =
~y − ~x
‖~y − ~x‖

. Then for 0 < t < ‖~x− ~y‖, ~x + t~u is a point on the line between ~x and ~y, so by

convexity of f , the value of f at ~x + t~u is less than or equal to the value of the linear function
joining [~x, f(~x)]T to [~y, f(~y)]T . This latter value can be found by considering the slope of the
line and the fact that the distance between ~x and ~x+ t~u is t: see Figure 2.18. Thus,

2.3. CONVEXITY AND OPTIMIZATION PROBLEMS 45

x u y

t

t u + x

f HxL

f HyL

fHxL + t
f HyL - f HxL

y - x

f Ht u + xL

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 2.18: Graphical explanation of (2.19).

f
(
~x+ t

~y − ~x
‖~y − ~x‖

)
≤ f(~x) + t

f(~y)− f(~x)

‖~x− ~y‖
. (2.19)

Recall that for f : Rn → R, if ~u is a unit vector, then ∇f(~x) · ~u is the instantaneous rate of
change of f in the direction ~u from x. Using the definition of instantaneous rate of change (the
limit of change in f over change in position), recalling that Df(~x) = ∇f(~x)T , and computing
with the unit vector ~u = (~y − ~x)/‖~y − ~x‖, (2.19) implies

Df(~x)
~y − ~x
‖~y − ~x‖

= lim
t→0+

f
(
~x+ t ~y−~x

‖~y−~x‖

)
− f(~x)

t
(definition of rate of change)

≤ f(~y)− f(~x)

‖y − x‖
Rearranging this gives (2.18).

1.2. (⇐) Let ~x, ~y ∈ K and 0 < t < 1. Then ~w = t~x+ (1− t)~y ∈ K and by assumption

f(~x) ≥ f(~w) +Df(~w)(~x− ~w), f(~y) ≥ f(~w) +Df(~w)(~y − ~w).

Taking t times the first plus (1− t) times the second,

tf(~x) + (1− t)f(~y) ≥ f(~w) +Df(~w)
(
t~x+ (1− t)~y − ~w

)
= f

(
t~x+ (1− t)~y

)
from the definition of ~w.

Proof of Part 2. of Proposition 2.26. (Optional)

We’ll need Taylor’s Theorem for functions of one variable: If f ∈ Cn then

f(x) = f(a)+f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + · · ·

+
1

(n− 1)!
f (n−1)(a)(x− a)n−1 +

1

n!
f (n)(s)(x− a)n

46 CHAPTER 2. CONSTRAINED OPTIMIZATION

for some s between x and a. This follows simply from the Mean Value Theorem.

On with the proof. We first consider a function h of one variable and prove that h : I → R is
convex iff h′′(x) ≥ 0 on the open interval I .

2.1. (⇒) We prove the contrapositive: if somewhere h′′(x) < 0 then we will show that h is
not convex. Since I is open there is δ > 0 so that h′′(z) < 0 for all x ≤ z ≤ x + δ and
y = x+ δ ∈ I . By Taylor’s theorem there is x < s < y such that

h(y) = h(x) + h′(x)(y − x) +
1

2
(y − x)2h′′(s).

Since x < s < y = x + δ, h′′(s) < 0 so h(y) < h(x) + h′(x)(y − x) which implies h is not
convex by part 1.

2.2. (⇐) Fix x, y ∈ I . By Taylor’s theorem there is x < s < y such that

h(y) = h(x) + h′(x)(y − x) +
1

2
(y − x)2h′′(s).

Since h′′(s) > 0, h(y) > h(x) + h′(x)(y − x) and h is convex by part 1.

Now extend this to f : K ⊂ Rn → R:

2.3 (⇒) fix ~x ∈ K and unit vector ~u ∈ Rn, and define

h(t) = f(~x+ t~u),

for −ε ≤ t ≤ ε sufficiently small that ~x + t~u ∈ K for all such t. By the chain rule, h′(s) =
Df(~x+ s~u)~u and h′′(s) = 1

2
~u TD2f(~x+ s~u)~u. Now

f is convex⇒ h(t) = f(~x+ t~u)

≥ f(~x+ s~u) +Df(~x+ s~u)(t− s)~u, ∀s, t by (2.18)
= h(s) + h′(s)(t− s)

⇒ h is convex by (2.18) again
⇒ h′′(s) ≥ 0, ∀s by the 1-D proof above

⇒ ~u TD2f(~x+ s~u)~u ≥ 0.

In particular, ~u TD2f(~x)~u ≥ 0, and for arbitrary ~v 6= ~0, ~v TD2f(~x)~v = ‖~v‖2~u TD2f(~x)~u ≥ 0,
where ~u = ~v/‖~v‖. Since ~u and ~x were arbitrary, this proves D2f is positive semi-definite on
K.

2.4 (⇐) Fix ~x, ~y ∈ K, let ~u = ~y − ~x, and define h(t) = f(~x + t~u) for −ε < t < 1 + ε, ε

2.3. CONVEXITY AND OPTIMIZATION PROBLEMS 47

sufficiently small that x+ t~u ∈ K for all such t. Then

D2f positive semi-definite⇒ ~u TD2f(~x+ t~u)~u ≥ 0, ∀t
⇒ h′′(t) ≥ 0, ∀t
⇒ h is convex
⇒ h(t) ≤ h(0) + h′(0)t by (2.18)

= f(~x) +Df(~x)t(~y − ~x)

⇒ f(~y) ≥ f(~x) +Df(~x)(~y − ~x) setting t = 1.

Since ~x, ~y ∈ K were arbitrary, this proves f is convex on K by (2.18) again.

We also define strictly convex functions and Proposition 2.26 extends with strict inequalities
(~x 6= ~y). In particular, in Proposition 2.26 (2), we can use Sylvester’s criterion (B.5.2) and
check that the leading principal minors are all positive.

Examples of convex functions:

• affine functions are convex, not strictly convex;

• T : Rn → Rm linear, f : Rm → R convex⇒ f(T~x) is convex;

• the supremum of a family of convex functions is again convex.

EXERCISE 2.27. Show that if f : K ⊂ Rn → R is convex, and if g : R → R is convex and
non-decreasing, then g(f(~x)) is convex.

EXERCISE 2.28. Show that the functions f(~x) = ‖~x‖m, m ≥ 1 are convex.

2.3.3 Sufficiency of KKT for convex problems

So long as there are no equality constraints, what is needed is that the feasible setK be a convex
set, and that f restricted to K be a convex function. If, in fact, the constraint functions gj are
themselves globally convex, and the objective function f is globally convex, then the proof of
sufficiency is more straight-forward, and so we present this first. However, convexity of the
constraint functions gj implies that the feasible set is convex, and are only interested in f on
the feasible set, so requiring global convexity of f isn’t needed. Thus, the subsequent theorem
(Theorem 2.30) implies this first theorem.

THEOREM 2.29. Assume f, g ∈ C1(Rn) are convex. Suppose there exist ~x ∗, ~µ such that the
KKT conditions

1. ~µ ≥ ~0,

48 CHAPTER 2. CONSTRAINED OPTIMIZATION

2. Df(~x ∗) + ~µ TDg(~x ∗) = ~0 T ,

3. ~µ Tg(~x ∗) = 0

hold. Then ~x ∗ is necessarily a (global) minimizer of f subject to the constraint g(~x) ≤ ~0.

If, further, f is strictly convex, then ~x ∗ is the unique minimizer.

Proof. Let ~y be such that g(~y) ≤ ~0; then

f(~y) ≥ f(~x ∗) +Df(~x ∗)(~y − ~x ∗) by convexity of f and Proposition 2.26,

= f(~x ∗)− ~µ TDg(~x ∗)(~y − ~x ∗) by 2. in KKT

≥ f(~x ∗) + ~µ T (g(~x ∗)− g(~y)) by (global) convexity of (each component of) g
and Proposition 2.26, and by 1. in KKT (2.20)

= f(~x ∗)− ~µ Tg(~y) by 3. in KKT
≥ f(~x ∗) since ~µ ≥ 0 and g(~y) ≤ 0.

In the case of strict convexity, if ~x 6= ~y then

f(~y) > f(~x ∗) +Df(~x ∗)(~y − ~x ∗) by strict convexity of f and Proposition 2.26,
≥ f(~x ∗) as above.

As discussed prior to the statement, the hypotheses of Theorem 2.29 require more than is nec-
essary. To see this we need to understand how convexity of the feasible set Ω can be used to
obtain the same inequality (2.20) in the proof of Theorem 2.29 where global convexity of the
components of g was used. With ~x ∗ and ~y as in Theorem 2.29, for any 0 ≤ t ≤ ‖~y − ~x ∗‖,

since Ω is convex, ~x ∗ + t
~y − ~x ∗

‖~y − ~x ∗‖
∈ Ω is feasible, so g(~x ∗ + t~u) ≤ ~0 there (where ~u is the

unit vector ~u = (~y − ~x ∗)/‖~y − ~x ∗‖). Since ~µ ≥ ~0, we thus have ~µ Tg(~x ∗ + t~u) ≤ ~0, and since
~µ Tg(~x ∗) = 0, we have,

~µ Tg(~x ∗ + t~u)− µ Tg(~x ∗) ≤ 0.

Dividing this by t > 0 we then have

~µ T
(g(~x ∗ + t~u)− g(~x ∗)

t

)
≤ 0. (2.21)

Taking the limit as t→ 0+, we have

lim
t→0+

g(~x ∗ + t~u)− g(~x ∗)

t
= the directional derivative of g at ~x ∗ in the direction of ~u

= ∇g(~x ∗) · ~u

= Dg(~x ∗)
~y − ~x ∗

‖~y − ~x ∗‖
.

2.3. CONVEXITY AND OPTIMIZATION PROBLEMS 49

Combining this with (2.21) (and multiplying through by ‖~y − ~x ∗‖) we obtain

~µ TDg(~x ∗)(~y − ~x ∗) ≤ 0.

This is precisely the inequality needed (2.20) and so following the proof of Theorem 2.29 we
have proved:

THEOREM 2.30. Let f : Rn → R, f ∈ C1 be a convex function on the feasible set Ω = {~x ∈
Rn : g(~x) ≤ ~0}, where g : Rn → Rp, g ∈ C1, and Ω is convex. Suppose there exist ~x ∗, ~µ such
that the KKT conditions

1. ~µ ≥ ~0,

2. Df(~x ∗) + ~µ TDg(~x ∗) = ~0 T ,

3. ~µ Tg(~x ∗) = 0

hold. Then ~x ∗ is a global minimizer of f over Ω.

EXERCISE 2.31. If g : Rn → R is convex, then for any c ∈ R, the set Kc = {~x ∈ Rn : g(~x) ≤
c} is a convex set.

Finally, if the objective function and the inequality constraint functions are convex functions
considered as functions on all of Rn, and the equality constraints are linear (or affine) then KKT
is sufficient. This simply requires the observation that h(~x) = 0 is equivalent to h(~x) ≤ 0 and
−h(~x) ≤ 0 and so convexity of h requires convexity of both h and −h, hence the requirement
that h be linear (or affine).

EXAMPLE 2.32. Minimize f(~x) = ‖~x‖4 + ‖~x− ~a‖2, ‖~x‖2 ≤ 1. The following is useful:

∂

∂xi
‖~x‖ =

xi
‖~x‖

,

so, for example,

∂

∂xi
‖~x‖2 = 2‖~x‖1 · xi

‖~x‖
= 2xi,

∂2

∂x2
i

‖~x‖2 = 2

∂

∂xi
‖~x‖4 = 4‖~x‖3 · xi

‖~x‖
= 4‖~x‖2xi,

∂2

∂x2
i

‖~x‖4 = 8x2
i + 4‖~x‖2.

Notice that the feasible set is convex. Computing D2f , we find the diagonal elements are
2 + 8x2

i + 4‖~x‖2 and the off-diagonal i, j elements are 8xixj . It’s not clear that this matrix is
positive semi-definite. However, the function ~x 7→ ‖~x‖ is convex since by the triangle inequality
‖t~x+(1−t)~y‖ ≤ t‖~x‖+(1−t)‖~y‖. From this we can conclude that x 7→ ‖~x‖2 and ~x 7→ ‖~x‖4 are

50 CHAPTER 2. CONSTRAINED OPTIMIZATION

convex functions because α2 and α4 are increasing convex functions, for α ≥ 0, and certainly
‖~x‖ ≥ 0. KKT gives

4‖~x‖2~x+ 2(~x− ~a) + 2µ~x = ~0

µ(‖~x‖2 − 1) = 0

µ ≥ 0.

• ‖~x‖2 = 1 : In this case, the first equation becomes~a = 3~x+µ~x and so ~x = t~a for some t;
but since ‖~x‖ = 1, in fact ~x = ~a/‖~a‖, and the first equation becomes ~a(‖~a‖−3−µ) = 0.
We can’t have ‖~a‖ = 0, so µ = ‖~a‖ − 3 and µ ≥ 0 implies ‖~a‖ ≥ 3. Thus, for ‖~a‖ ≥ 3,
there is the candidate ~x = ~a/‖~a‖.

• µ = 0 : the first equation can be re-written ~x(2‖~x‖2+1) = ~awhich again implies ~x = t~a

for some t. Plugging this into the first equation yields aj(2t3‖~a‖2 + t− 1) = 0, so either
aj = 0 for all j, or aj 6= 0 for some j in which case 2t3‖~a‖2 + t − 1 = 0. If ~a = ~0 then
the problem clearly has minimizer ~x = ~0. Thus we seek the zeros of p:

p(t) = 2t3‖~a‖2 + t− 1 = 0.

To understand this cubic, notice that p′(t) is never zero, so p(t) always has a unique real
root. All we need to do now is see whether these candidates ever occur at the same time
as the candidate we found above. Writing ‖~a‖ = ‖~x‖/t,

2t3‖~a‖2 + t− 1 = 0 ⇒ t(2‖~x‖2 + 1) = 1 ⇒ ‖~a‖t(2‖~x‖2 + 1) = ‖~a‖
⇒ ‖~x‖(2‖~x‖2 + 1) = ‖~a‖.

Since ‖~x‖ ≤ 1, we conclude

0 < ‖~a‖ = ‖~x‖
∣∣2‖~x‖2 + 1

∣∣ ≤ 3.

Thus these candidates do not coincide with the previous ones (except when ‖~a‖ = 3 when
we can check that they give the same solution).

In the case n = 2, we can illustrate these results very clearly as in Figures 2.19, 2.20 and 2.21.
�

2.4 Exercises

1. Exercise 2.9, page 21.

2. Exercise 2.12, page 22.

2.4. EXERCISES 51

12

13

14

15

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 2.19: (Example 2.32) ‖~a‖ > 3, (e.g. ~a = [3, 3]T here).

3. Prove that the tangent space to the unit sphere, at the point ~p = [0, 0, 1]T , T~p S2, is the set
of vectors S = {[a, b, 0]T , a, b ∈ R}. Note: if ~v = [a, b, 0]T , it is quite easy to come up
with a curve ~x(t) in the sphere with ~x(0) = [0, 0, 1]T and with ~x ′(0) = ~v; this shows that
S ⊂ T~p S2. To prove the reverse containment, you must start with an arbitrary curve ~x(t)
in the sphere with ~x(0) = [0, 0, 1]T and show that ~x ′(0) is of the form [a, b, 0]T .

4. Find and classify the critical points of

(a) f(x, y) = (2− x− y)2 + (1 + x+ y − xy)2.

(b) f(x, y) = (2− x− y)2 +
1

3
(1 + x+ y − xy)3.

5. Let a1 ≥ 0 and a2 ≥ 0. The function f(x1, x2) = a1x
2
1 + a2x

2
2 is an elliptical parabolic

bowl (perhaps degenerate if a1 = 0 or a2 = 0); the constraint c1x1 + c2x2 = 1 is clearly
a straight line. Find the minimum and maximum of f subject to the given constraint. Be
sure to consider all possible cases of the parameters aj and cj .

6. Consider the constrained problem of minimizing f(~x) =
n∑
i=1

aix
2
i subject to

n∑
i=1

cixi = 1,

where ci 6= 0 for all i and the ai ≥ 0 for all i (we allow the possibility of ai’s being zero).
Note: the constraint is unbounded, so you need to consider what happens “at infinity.”
You will also need to consider the various cases where some, or all, the ai = 0. Determine
the location(s) of minima, when they exist.

52 CHAPTER 2. CONSTRAINED OPTIMIZATION

6

7

8

9

10

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 2.20: (Example 2.32) ‖~a‖ = 3 (e.g. ~a = [3/
√

2, 3/
√

2]T here).

7. The function in Problem 5 has level sets which are ellipses with major and minor axes
aligned with the coordinate axes, and centered at the origin (if a1 > 0 and a2 > 0). A
more general elliptic bowl is given by

f(x1, x2) = a11x
2
1 + 2a12x1x2 + a22x

2
2 + b1x1 + b2x2,

where the matrix A = (aij) is positive definite. Find the minimum and maximum of f
subject to the constraint c1x1 + c2x2 = 1. Hint: work with matrices and vectors.

Does this problem, and your solution, generalize to Rn?

8. Let

f(~x) = (x1 − 1)2 +
n−1∑
i=1

(xi+1 − xi)2 + x2
n.

(a) Find the critical points of f . (Find an explicit formula for xj .)

(b) Write the condition for a critical point in the form A~x = ~b and show that the matrix
A is invertible. (One way to do this is to show that the unique solution to A~x = ~0 is
~x = ~0.)

(c) Find the location of the minimum of f subject to the constraint
n∑
i=1

aixi = c. (Hint:

use part (b).) Note: the constraint function is unbounded, but f is bounded below
(by 0 for example) and so must have a minimum.

2.4. EXERCISES 53

1

2

3

4

5
6

7

8

9

10

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 2.21: (Example 2.32) ‖~a‖ < 3 (e.g. ~a = [1, 1]T here).

9. Find the minimum and maximum of f(x, y) =

∫ y

x

1

1 + t4
dt subject to the constraint

x2y2 = 1. (Note: the feasible set is unbounded so you need to consider what happens as
‖[x, y]T‖ → ∞; Mathematica can find an anti-derivative of 1/(1 + t4), but you should
not use Mathematica here.)

10. Where is the surface xy + yz + zx = 12 closest to the origin? Without re-solving the
problem, approximately how much closer to/further from the origin is the closest point
on the surface xy + yz + zx = 12.2? Justify your answer.

11. Solve the shortest ladder problem: Problem 1. in Chapter 1.

12. Use Mathematica to find the minimum and maximum of f(x, y, z) = (x+y)2+z3 subject
to the constraints x2 + y2 + z2 = 4 and x+ y+ z = 1. If the constraints were changed to
x2 + y2 + z2 = 4.2 and x + y + z = 0.9, without re-solving the problem, estimate what
the new minimum and maximum will be.

13. Minimize f(x, y, z) = x− y + z subject to x2 + y2 + z2 ≤ 1.

14. Minimize f(x, y, z) = (x − 10)2 + (y − 10)2 + (z − 10)2 subject to x2 + y2 + z2 ≤ 12
and −x − y + 2z ≤ 0. If ~x ∗ is the optimal point, which of the constraints (if either) are
active at ~x ∗? Is ~x ∗ a global minimizer? Is the global minimum unique?

15. Minimize f(x, y) = x2 + 4y2 − 4xy − x+ 12y subject to x+ y ≥ 4 and x ≥ 0, y ≥ 0.

54 CHAPTER 2. CONSTRAINED OPTIMIZATION

16. Maximize and Minimize f(x, y) = x2 − y2 subject to (x− 2)2 + y2 − 4 ≤ 0.

17. Sketch the region satisfying x2 + y2 ≤ 4 and x2 − y2 ≤ 1. Find the minimum and
maximum of f(x, y) = x2 + 2y2 + xy over this region.

18. Solve Problem 3. in Chapter 1.

19. Solve Problem 4. in Chapter 1.

20. Use Mathematica to solve the scaffolding problem: Problem 2. in Chapter 1.

21. Exercise 2.24, page 43.

22. Exercise 2.27, page 47.

23. Exercise 2.28, page 47.

24. Exercise 2.31, page 49.

25. Let f : Rn → R. Define, for each a ∈ R, S(a) = {~x : f(~x) ≤ a}.

(a) Prove that if f is a convex function then, for any a, S(a) is a convex set.

(b) Suppose that S(a) is a convex set for all a. Need f be a convex function?

26. Consider the function f(~x) = 2x2 + 2xy + y2 − yz + 2z2.

(a) Is f a convex function?

(b) Is f a strictly convex function?

27. Minimize f(x, y) = −x−2y+y2 subject to x+y ≤ 1 and x ≥ 0, y ≥ 0. Is this a convex
optimization problem? Explain.

28. Determine whether or not f(x, y) =
x2

y
is convex on k = {(x, y) : x > 0, y > 0}. First

try Sylvester’s Criterion and show that it fails to show that f is strictly convex; now show
that it is convex.

29. Show that f(x, y, z) = x2 + y2 + z2 − x − y − z is convex. Is the feasible set x2 +
y2 = 4, −1 ≤ z ≤ 1 convex? Find the minimum and maximum of f subject to these
constraints.

30. (a) If Q is an n × n symmetric matrix and ~v ∈ Rn, define g(~x) = ~x TQ~x + ~v T~x. Find
Dg(~x) and D2g(~x).

(b) Let A be an m× n matrix, and~b ∈ Rm. Define f : Rn → R by f(~x) = ‖A~x−~b‖2.
Show that f is a convex function (on Rn).

(c) For this problem, A is an n× n matrix which is not necessarily symmetric.

i. Show that A is positive definite if, and only if A+ AT is positive definite.

2.4. EXERCISES 55

ii. Formulate a test for checking that A is positive definite (other than ~x TA~x > 0
for all ~x!).

iii. Use your test to determine whether or not the matrix A =

 2 2 3
0 1 −4
−3 3 2

 is

positive definite.

56 CHAPTER 2. CONSTRAINED OPTIMIZATION

Chapter 3

Approximate Optimization

3.1 Introduction

In practice, we cannot expect to know a lot about the function we are trying to minimize. For
example, to determine a derivative at a point would likely require evaluation of the function at
two places to enable the difference quotient to be used as an approximation. To estimate the
gradient would require doing this n times. To approximate a second derivative requires (at least)
three function evaluations, and to find the matrix of all second order derivatives would require

doing this
1

2
n(n+1) times. If we assume that it is, in some sense, expensive to perform function

evaluations, then we seek schemes for finding minima with as few evaluations as possible. It is
fairly clear that first derivative information is necessary so as to know which direction is at least
an improvement, but we will try to avoid using second derivative information.

Our goal is to find a sequence of successive approximations ~xk to the optimal location ~x ∗ such
that ‖~xk − ~x ∗‖ → 0 as k increases. Better still, we would like ‖~xk+1 − ~x ∗‖ ≤ C‖~xk − ~x ∗‖α
such that C, α > 0. The bigger α and the smaller C the better. In these notes we won’t actually
analyze such convergence issues.

DEFINITION 3.1. Search direction: At any stage we are at, say, ~xk. A “search direction” is a
vector ~dk, so that our next position ~xk+1 satisfies ~xk+1−~xk is parallel to (a positive multiple of)
~dk.

Step-size: If we have chosen a search direction, we need to specify how far we should move
in that direction. This is the “step-size” tk > 0 so that ~xk+1 = ~xk + tk ~dk. I.e. tk = ‖~xk+1 −
~xk‖/‖~dk‖.

Note: We’ll only consider unconstrained problems here.

57

58 CHAPTER 3. APPROXIMATE OPTIMIZATION

A first order necessary condition to be at a minimum is that ∇f(~x ∗) = ~0; as a test to know
when to stop, we typically try to satisfy ‖∇f(~xk)‖ < ε for a given tolerance ε > 0.

A second order necessary condition to be at a minimum is that ~u TD2f(~x ∗)~u ≥ 0 for all ~u,
where D2f(~x ∗) is the Hessian of f (B.7.6). That is, D2f is positive semidefinite (B.5.1).

A second order sufficient condition: ∇f(~x ∗) = ~0 and D2f is positive definite (B.5.1).

3.2 Line Searches

For the moment we assume that from ~xk the direction ~dk has somehow already been determined
and we are in the position of determining the best tk; that is we want to minimize h(t) =

f(~xk + t~dk). Solving this one-dimensional problem is called a line search scheme.

What makes one search method better than another is if it uses fewer function evaluations to
achieve the same degree of accuracy in finding the minimum of h. The first two methods search
from an initial point t0. Without further prior knowledge about properties of h, we cannot
determine the number of steps it will take to achieve a desired accuracy. We then consider
methods which assume knowledge of an interval within which it is assumed the minimum must
be achieved. Of course, we must address the issue of finding this interval in the first place.

3.2.1 Fixed step size

Simply step ∆t until h(ti+1) ≥ h(ti) and then reduce ∆t, changing its sign, and continue:
assuming we have h(ti) < h(ti−1), suppose we then find h(ti+1) ≥ h(ti). We now know that a
(local) minimum must occur between ti−1 and ti+1 – it’s possible that the minimum is between
ti−1 and ti or ti and ti+1 (see Figure 3.1):

1.5 2.0 2.5 3.0

-1

1

2

3

4

æ

æ

àà

ìì

ti-1 ti ti+1

Figure 3.1: The minimum may occur between ti−1 and ti, or between ti and ti+1.

3.2. LINE SEARCHES 59

So, at this point we “turn around” and step back in smaller steps; set ∆t to −1

2
∆t, say.

As an algorithm:

1. Choose “tolerance” ε. Choose t0 and ∆t. Set k = 0.

2. If |h′(tk)| ≤ ε, STOP.

3. Set tk+1 = tk + ∆t.

4. If h(tk+1) ≥ h(tk) then set ∆t← −1

2
∆t.

5. k ← k + 1.

6. Go to 2.

Here is a way to encode this in Mathematica: (See the Mathematica notebook “Approx Fixed-
Step.nb”

FixedStep[h , t0 , dt , tol] :=
Module[
{FSList = {t0}, Dt = dt},
While[Abs[h’[FSList[[-1]]]] > tol,

AppendTo[FSList, FSList[[-1]]+ Dt];
If[h[FSList[[-1]]] >= h[FSList[[-2]]], Dt = -Dt/2]

];
FSList

]

Some explanation:

• Module is a way to combine several commands into a single routine. We have called the
routine FixedStep. It takes as arguments: a function h (which has to be a pure function
– see later); an initial starting point t0; an initial step-size dt; and a tolerance tol.

• When specifying arguments in defining a function or module like this, the underscores
are necessary – this says that the values are “replaceable.”

• The := means “delayed evaluation” – Mathematica will not try to evaluate the func-
tion/module until it is called.

• A Module must consist of two components.

The first is a list {var1, var2, ...} of local variables. Notice that these can be
set to have initial values as here, though it is not necessary. It is also possible to have an
empty list { }, but the list must be there. Following this list is a comma.

60 CHAPTER 3. APPROXIMATE OPTIMIZATION

Following this is any number of commands separated by semi-colons. The final command
is what is the output (or “return”) of the module. If, as here, there is no semi-colon, then
the module returns that last value. If there were a semi-colon, it would return nothing
(though it might be doing some useful calculations none-the-less).

Remark: Why do we need to use Dt when we have already passed dt? The answer is
that dt is only an initial ∆t, and it needs to change. You are not allowed to change the
value of an argument passed to a module/function. So, we set up a new variable, internal
to the module which can be changed, and we initialize it to be dt.

• The guts of the module is a While loop – this says, while the derivative is too large,
keep looping through the commands. FSList stands for “Fixed Step List” and will be
the list of points ti of the algorithm. Calling FSList[[-1]] grabs the last component
of FSList.

• AppendTo[list, value] takes list and appends value to the end, the result
being list one element longer than it was.

• If[condition, do first, else do second] does: if the condition is
true, perform the first action, otherwise perform the second action. The second action
doesn’t have to be there (as in our case).

• The final line simply returns FSList.

What’s this about pure functions? Usually one can define functions, like h(x) = x2 simply by
h[x] = x∧2. But now Mathematica needs to know that it is x that it should differentiate
with respect to (for example). Better is to define the pure function h = Function[#∧2].
The # plays the role of the variable, but it is not specified what it has to be. You should try to
get into the habit of programming this way.

3.2.2 Newton’s method

At ti find the quadratic q(t) which agrees with h at ti to second order and set ti+1 to be the
minimizer of q:

ti+1 = ti −
h′(ti)

h′′(ti)
.

Note: If the objective function has a zero tangent somewhere, Newton’s method will likely get
stuck there, even if it is not a minimum. In coding in Mathematica, it’s advisable to compute
numerically (N[· · ·]); otherwise, the routine can run very slowly as Mathematica works to
compute things exactly.

Newton’s method can be shown to converge very quickly if the initial point is close enough
to the location of the true minimum. However, this is not something that can necessarily be

3.2. LINE SEARCHES 61

assured, and when this is not the case, Newton’s method can fail dramatically. Furthermore, we
see that it is necessary to compute second derivatives of h, something that is computationally
expensive.

EXERCISE 3.2. Write Mathematica code to implement this one-dimensional Newton’s method.

3.2.3 Golden Section method.

We assume here that that h has only one local minimum on the interval [a0, b0] – in fact we
assume more: we assume that h is unimodal on the interval. That means there is some point
a0 ≤ t∗ ≤ b0 so that h is monotonically decreasing for a0 < t < t∗ and monotonically increas-
ing for t∗ < t < b0 (if h is continuous, then having only one local minimum implies unimodal).
We want to successively cut the interval into smaller and smaller pieces, guaranteeing at each
stage that t∗ is in the new smaller interval, but we want to do so with as few function evaluations
as possible (think in terms of both speed and cost).

We will choose ρ > 0, without loss of generality ρ <
1

2
, and divide the current interval into

pieces of proportion ρ : 1− ρ.

It is important to see why we don’t choose ρ =
1

2
. If we divide the interval in half and evaluate

h at the midpoint, we have no way of knowing whether t∗ lies in the left- or the right-hand
subinterval. If we divide the interval into three pieces, and evaluate h at each of the two interior
points, we can determine whether t∗ lies in the union of the first two, or the union of the second
two.

Whatever ρ will be, we obtain two new internal points L and R, say, by setting

L = a0 + ρ(b0 − a0), R = b0 − ρ(b0 − a0).

a0 b0L = a0+ρ(b0-a0) R = b0-ρ(b0-a0)

ρ(b0-a0) ρ(b0-a0)

With knowledge of h(a0), h(L), h(R) and h(b0) we will set our new interval [a1, b1] to be either
[a0, R] (if h(L) < h(R)) or [L, b0] (if h(L) > h(R)).

Suppose (without loss of generality) that the new interval is [a1, b1] = [a0, R]; we will then
repeat the process on this new interval: define two new internal points, say

L′ = a0 + ρ(R− a0), R′ = b1 − ρ(R− a0).

62 CHAPTER 3. APPROXIMATE OPTIMIZATION

To minimize the number of function evaluations, when we determine L′ and R′ we make one
of them coincide with either L or R, depending on which one we know is in the region where
the minimum must lie. It is this condition which will determine ρ. Note that we have already
determined the values of h at a1 and b1. This process guarantees that each sub-division requires
only one more function evaluation, even though we are always involving two interior points. (If
we didn’t insist on this efficiency of evaluation, we could do better in terms of shrinking the

intervals by taking ρ =
1

2
− ε for very small ε.)

So, in our example where h(L) < h(R), we know that t∗ ∈ [a0, R]; we want to choose our next
interval so that one end of it coincides with L (which we are currently not using). I.e. we want
ρ so that either L′ = L or R′ = L. We want

L′ := a0 + ρ(R− a0) = L, or R′ := R− ρ(R− a0) = L.

Notice here the length of the interval we currently have is R−a0, not R−L (do you see why?).

EXERCISE 3.3. As you would expect, solving L′ := a0 + ρ(R− a0) = L yields ρ = 0.

a0 L = a0+ρ(b0-a0) b1=b0-ρ(b0-a0)

ρ(b0-a0)

L' = a0+ρ(b1-a0) R' = b1-ρ(b1-a0)

Using the definitions of L and R in R− ρ(R− a0) = L we have

b0 − ρ(b0 − a0)− ρ
(
b0 − ρ(b0 − a0)− a0

)
= a0 + ρ(b0 − a0)

which simplifies to

ρ2(b0 − a0)− 3ρ(b0 − a0) + (b0 − a0) = 0

and since b0 − a0 6= 0,

ρ2 − 3ρ+ 1 = 0 ⇒ ρ =
3−
√

5

2
using ρ <

1

2
.

So we’ve determined ρ. Now we can define the next new interval: it will be either [a2, b2] =
[a1, R

′] (if h(L′) < h(R′)), or [a2, b2] = [L′, b1] (if h(L′) > h(R′)). Our choice guarantees that
t∗ lies within our new interval, and the point not used (L′ in the first case, R′ in the second) lies
in the new interval and we already know the value of h there, so on the next iteration we will
not need extra function evaluations.

3.2. LINE SEARCHES 63

Using this Golden Section method reduces the size of the interval by 1 − ρ ≈ 0.618 at each
iteration/each function evaluation. If we start with [a0, b0] and we want the final interval to have
length less than δ, say, then we need n so that

bn − an = (1− ρ)n(b0 − a0) < δ, that is, n ≥
ln
(
δ/(b0 − a0)

)
ln(1− ρ)

. (3.1)

Why is this called the Golden Section method? The Golden ratio is the ratio of ϕ =
1 +
√

5

2
to

1. Our ρ is such that the ratio 1 : (1 − ρ) is the same as ϕ : 1 (i.e. ϕ = 1/(1 − ρ)). That is,
the ratio of the old interval to the new interval is ϕ.

Efficiency: What, then, is t∗, or our approximation t̃ to t∗, and how accurate it is? All we know
is that it lies in the final interval, [an, bn]. Within this interval, we actually know the value of h
at one point; it is either an + ρ(bn − an) (if bn = bn−1) or bn − ρ(bn − an) (if an = an−1.). Our
best choice for our approximate t̃ is then this internal value; we are not making an additional
function evaluation, and we can be sure that the true value of t∗ is within (1− ρ)(bn − an) of t̃.
Thus,

|t̃− t∗| ≤ (1− ρ)(bn − an) = (1− ρ)n+1(b0 − a0).

So, if our goal is to find t∗ to within accuracy of ε, we should choose n so that

(1− ρ)n+1(b0 − a0) < ε, that is, n ≥
ln
(
ε/(b0 − a0)

)
ln(1− ρ)

− 1. (3.2)

Compare this to (3.1) above.

As an algorithm:

1. Set ρ = 1− 0.618 = 0.382. Choose tolerance ε. Choose a0 < b0.

2. Compute the number of steps needed: N =
⌈ ln
(
ε/(b0 − a0)

)
ln(1− ρ)

− 1
⌉

;

k ← 1.

3. If k > N , go to 7.

4. Interior points: IL = ak + ρ(bk − ak), IR = bk − ρ(bk − ak).
If h(IL) < h(IR) then ak+1 ← ak and bk+1 ← IR
Else ak+1 ← IL and bk+1 ← bk.

5. k ← k + 1.

6. Go to 3.

7. Return the last interior point:
If h(IL) < h(IR) then t̃ = IL
Else t̃ = IR.

64 CHAPTER 3. APPROXIMATE OPTIMIZATION

Notes: in this algorithm we don’t specifically make use of the fact that we don’t have to re-
evaluate h at both the interior points; in practice, we would want to record the evaluation to be
available for the next iteration. Similarly, we actually know that one of the next ak+1, bk+1 will
coincide with one of the ak, bk, but in the above we simply compute it once again.

EXAMPLE 3.4. Minimize f(t) = t4− 14t3 + 60t2− 70t in [0, 2] finding t∗ to within 0.3. Using
(3.2) above, we need n so that (0.618)n+1|I1| ≤ 0.3, and find n = 3. Following the idea of the
algorithm above:

• With a0 = 0, b0 = 2 we obtain

f(a0 + ρ(b0 − a0)) = f(0.7639) = −24.36

f(b0 − ρ(b0 − a0)) = f(1.236) = −18.96

so our new interval is [a1, b1] = [a0, b0 − ρ(b0 − a0)] = [0, 1.236];

0.5 1.0 1.5 2.0

-25

-20

-15

-10

-5

• Now

f(a1 + ρ(b1 − a1)) = f(0.4721) = −21.1

f(b1 − ρ(b1 − a1)) = f(0.7639) = −24.36 (which we have for free)

and so our next interval is [a2, b2] = [0.4721, 1.236], (b2 = b1);

0.5 1.0 1.5 2.0

-25

-20

-15

-10

-5

• Next

f(a2 + ρ(b2 − a2)) = f(0.7639) = −24.36 (which we have for free)
f(b2 − ρ(b2 − a2)) = f(0.9443) = −23.59

3.2. LINE SEARCHES 65

and so our next interval is [a3, b3] = [0.4721, 0.9443] (a3 = a2);

0.5 1.0 1.5 2.0

-25

-20

-15

-10

-5

• At this point we know that the true minimum is in the interval [0.4721, 0.9443]. We should
take as our best estimate for t∗ the point t̃ = 0.7639 (for which we know the value of f).
We have

|t̃− t∗| < 0.7639− 0.4721 = 0.2918 < 0.3

as required.

�

EXERCISE 3.5. Write Mathematica code to implement the Golden Section method. Here is
some skeleton code to get you started (you need to complete the code, in particular where there
is “. . . ”). (See the Mathematics notebook “Approx GoldenSection.nb”)

GoldenSection[h , p0 , tol] :=
Module[
{GSList = {N[p0]}, ρ = N[...], IntPts = p0, step,

best, NumSteps},
NumSteps = ...;
For[step = 1, step <= NumSteps,

IntPts = ...; (calculate internal points)
If[h[IntPts[[1]]] < h[IntPts[[2]]],

(* minimum is in the left-hand part *)
AppendTo[GSList, ...],
(* otherwise minimum is in the right-hand part *)
AppendTo[GSList, ...]

];
step++;

];
best = ...; (calculate best approximation)
{GSList, best}

];

66 CHAPTER 3. APPROXIMATE OPTIMIZATION

Remarks:

• We set GSList = N[p0] as numerical to force Mathematica to always compute nu-
merically rather than symbolically. GSList is the list of pairs of endpoints of the suc-
cessive intervals.

• The last pair of points found is the last element of GList, i.e. GList[[-1]]. The
components of this last element are GSList[[-1,1]] and GSList[[-1,2]].

• IntPts are the two new interior points which we use to determine the next interval.
We initialize IntPts = p0 for the following reason: suppose that the initial interval
was shorter than the requested tolerance tol. Then NumSteps will be less than 1 and
the For[] loop will not be visited. However, the declaration of best at the end of
the algorithm will be in terms of the last values of IntPts. With this initialization of
IntPts, the algorithm will return the initial interval if it is shorter than the tolerance,
and the initial endpoint at which h is smaller as the best approximation.

• Comments can be included in Mathematica code by surrounding them by (* and *), e.g.
(* comment *).

• What is returned is both the list of intervals and the best approximate t̃.

3.2.4 Fibonacci search method.

We proceed as in the Golden Section method but allow ρ = ρj to change at each step. We will
see that by choosing ρj judiciously it is possible to out-perform the Golden Section method.
In the Golden Section derivation, we found an equation ρ must satisfy, based on knowing the
locations within the previous interval of the internal points. Now, to determine ρk+1, we won’t
know the locations of the internal points of the previous interval explicitly, but we will know
them in terms of ρk.

If at step k the interval has (without loss of generality) length 1 and ak−1 = 0, bk−1 = 1,
we have ak = ρk and bk = 1 − ρk. If we assume (again, without loss of generality) that the
minimum lies in [0, bk], we need

bk+1 := (1− ρk+1)bk = (1− ρk+1)(1− ρk) = ak := ρk

⇒ ρk+1 =
ρk

ρk − 1
+ 1 = 1− ρk

1− ρk
.

This doesn’t pin the sequence of ρk down (indeed, setting them all equal to the Golden Section
ratio will work). After n iterations of this, the interval shrinks by a factor of (1−ρn) · · · (1−ρ1).
What we want is to minimize this, subject to the constraints that ρk ≥ 0 and the above recurrence

3.2. LINE SEARCHES 67

relation holds. One sequence which yields a solution to this comes from the Fibonacci sequence
enumerated as F−1 = 0, F0 = 1, and Fk+1 = Fk + Fk−1. The ρk turn out to be given by

ρ1 = 1− Fn+1

Fn+2

, · · · ρk = 1− Fn−k+2

Fn−k+3

, · · · ρn = 1− F2

F3

=
1

3
.

In fact, this sequence is the unique minimizer of the constrained optimization problem.

To calculate by how much the interval size is reduced, we have to observe that the nth interval
(bn − an) is (1− ρn) times the length of the previous one, and so on, to obtain:

bn − an = (1− ρn)(1− ρn−1) · · · (1− ρ2)(1− ρ1)(b0 − a0) =
2

Fn+2

(b0 − a0).

In order to apply this algorithm, we have to decide a priori how many steps we are going to
perform because ρ1 is given in terms of the last Fibonacci number(s). Really what we have
done is solved: given that we want to obtain a certain degree of accuracy, what is the minimal
number of evaluations we can make, and how should we make them? To obtain a final interval

of length less than δ, one first must find n so that
2

Fn+2

L < δ (where L is the length of the

initial interval). This is the equivalent to (3.1) in the Golden Section method.

Efficiency: Within the final interval, we know the value of the function at the midpoint (because
ρn = 1/3). Choosing the approximate value t̃ to be this midpoint, we obtain

|t̃− t∗| ≤ 1

2
(bn − an) =

1

Fn+2

(b0 − a0). (3.3)

This is the equivalent of (3.2) in the Golden Section method.

EXERCISE 3.6. Prove that, for all n,
1

Fn+2

< (1− ρ)n+1.

EXAMPLE 3.7. Apply this method to: Minimize f(x) = x4−14x3 +60x2−70x in [0, 2] finding
x∗ to within 0.3. By (3.3), one finds that, again, n = 3 is needed.

• ρ1 = 1− F4

F5

= 1− 5

8
=

3

8
= 0.375;

f(a0 + ρ1(b0 − a0)) = f(0.75) = −24.34

f(b0 − ρ1(b0 − a0)) = f(1.25) = −18.65.

so our second interval is [a1, b1] = [a0, b0 − ρ(b0 − a0)] = [0, 1.25];

• ρ2 = 1− 3

5
= 0.4,

f(a1 + ρ2(b1 − a1)) = f(0.5) = −21.69

f(b1 − ρ2(b1 − a1)) = f(0.75) = −24.34 (which we have for free)

and so our next interval is [a2, b2] = [0.5, 1.25];

68 CHAPTER 3. APPROXIMATE OPTIMIZATION

• ρ3 = 1− 2

3
= 0.33,

f(a2 + ρ3(b2 − a2)) = f(0.75) = −24.30 (which we have for free)
f(b2 − ρ3(b2 − a2)) = f(1.0) = −23

and so our next interval is [a3, b3] = [0.5, 1.0].

• At this point, we already know the value of f at the midpoint 0.75, and we take x̃ = 0.75.

We are guaranteed that |x̃ − x∗| < 1

2
(b3 − a3) = 0.25 < 0.3 as expected. It has done a

little better than the Golden Section method.

�

Important Remark: Using either of the Golden Section or Fibonacci methods requires an
initial “bracket” within which you know (or expect) the solution to lie. One usually knows one
end of this bracket since we know we are looking in a direction of descent. However, the other
end is not known and in general we have to use a heuristic “rule of thumb” procedure to obtain
this initial bracket. For example: suppose we are at position ~xk and we have a descent direction
~dk; define h(t) = f(~xk + t~dk). We could evaluate h at t = µ0 = 0, t = µ1 = α, t = µ2 = 2α,
t = µ3 = 4α,. . . , t = µk = 2k−1α, with some α sufficiently small. At each step we check to
see if the value of h is still decreasing. Once we see it have an increase h(µj+1) ≥ h(µj), we
can use

[
µj−1, µj+1

]
as our initial bracket, and then apply one of these line search methods. In

choosing how small to take α, it is prudent to take into account the size of ‖~dk‖. We need α‖~dk‖
to be small, so something to try might be:

α‖~dk‖ ≤
1

100
⇒ α =

1

100‖~dk‖
.

The value 100 in the denominator is something that might be changed in a given situation if we
believe we should be more (or less) careful.

Some Mathematica code which implements the above algorithm is (see the Mathematica note-
book “Approx InitInt.nb”)

InitInt[h , t0 , α] :=
Module[{k = 0, L = {t0}, d, t, αloc = α},

(* ensure a descent direction *)
d = -Sign[D[h[t],t]/.t -> t0];
(* ensure sufficiently small step *)
While[h[t0+αloc] >= h[t0], αloc = αloc/2];
While[h[L[[-1]]] > h[t0+2∧k αloc d],

AppendTo[L, t0+2∧k αloc d];
k++];

AppendTo[L, t0+2∧k αloc d];
Sort[{L[[-3]],L[[-1]]}]

]

3.3. GRADIENT METHODS 69

Notes:

• The function h must be passed as a pure function;

• t0 is the initial point, and α is a parameter controlling how fine the search for an initial
interval should be;

• The reason for evaluating d = -Sign[D[h[t],t]/.t -> t0] is to ensure we
move from t0 in a direction where h decreases. Note that if (D[h[t],t]/.t ->
t0) = 0 then the algorithm will fail. In certain applications, it may not be feasible
to compute h′(t) (the Golden Section and Fibonacci methods don’t use derivative in-
formation at all themselves) in which case this line of code should be removed and the
algorithm calling InitInt[] must be robust enough to ensure the search direction
(with increasing t) is indeed a descent direction;

• A problem can occur if the α passed is such that h(t0 + α) > h(t0), i.e. even for the
smallest step size, the function goes up. We should first make sure that α is sufficiently
small that we achieve a decrease. Thus, we define a local version of α, αloc and the first
While[] loop repeatedly halves αloc until it is sufficiently small. In fact, the result
of this is now an algorithm which either searches to the left of t0 + α by increments of
2−jα or to the right of t0 +α by increments of 2jα, depending on whether h has increased
or decreased from h(t0).

• L consists of the list of places where we evaluate h.

• k++ is equivalent to k = k+1;

• The final Sort command is necessary since if we were moving “to the left” then the final
interval would otherwise be in the wrong order.

3.3 Gradient Methods

3.3.1 Introduction

We’ve discussed how to decide how far to step assuming the direction is already determined;
now we address the harder problem of determining in what direction to move.

Recall the gradient of a function Rn → R: ∇f(~x) is a vector orthogonal to the plane tangent
to the level set of f passing through (~x, f(~x)); thus, it is easy to verify, ∇f(~x) points in the
direction in which f increases the most rapidly from ~x.

DEFINITION 3.8. A descent direction for f at ~x is a ~d such that∇f(~x) · ~d < 0.

70 CHAPTER 3. APPROXIMATE OPTIMIZATION

3.3.2 Steepest Descent Method

From an approximate minimum location ~xk choose the direction ~dk = −∇f(~xk); if ‖~dk‖ ≤ ε
for some pre-assigned threshold ε then stop and ~x ∗ ≈ ~xk (for at a local minimum ~x ∗,∇f(~x ∗) =
~0). Otherwise perform a line search to find

tk = argmin
t≥0

f(~xk + t~dk)

and set ~xk+1 = ~xk + tk ~dk.

Note: “argmin
t≥0

” means the argument (i.e. the t) which achieves the minimum (rather than the

minimum value itself).

The sequence of approximations has an interesting, though not desirable, pattern:

PROPOSITION 3.9. If {~xk} is a steepest descent sequence then ~xk+1 − ~xk is orthogonal to
~xk+2 − ~xk+1.

Proof. By definition,

〈~xk+1 − ~xk, ~xk+2 − ~xk+1〉 = tktk+1〈∇f(~xk),∇f(~xk+1)〉

so we must prove 〈∇f(~xk),∇f(~xk+1)〉 = 0. If h(t) = f(~xk − t∇f(~xk)) then

0 = h′(tk) = ∇f(~xk − tk∇f(~xk))
T (−∇f(~xk)) = −〈∇f(~xk+1),∇f(~xk)〉.

EXAMPLE 3.10. Consider f(x, y) =
3

2
x2 + 2xy + 2y2 − 4x− 2y, with ~x0 = [−3.5, 2]T . It

takes 15 iterations to achieve ‖∇f‖ < 0.01 and we obtain the sequence of points shown in
Figure 3.2. This zig-zag path can result in a very inefficient search. Consider the following

example: f(x, y) =
1

2
x2 + 2xy + 4y2 − 4x − 2y, with ~x0 = [−3.5, 2]T . This time it takes 60

iterations to achieve ‖∇f‖ < 0.01; we obtain Figure 3.3. �

EXAMPLE 3.11. A numerical example: f(x, y, z) = (x− 4)4 + (y − 3)2 + 4(z + 5)4 (we can
see that the minimum is at [4, 3,−5]T), ~x0 = [4, 2,−1]T .

We find ~d0 = −∇f(~x0) = −[0,−2, 1024]T .

To compute ~x1 we need t0 = argmin
t≥0

f(~x0 + t~d0). Set h(t) = f(~x0 + t~d0); to implement the

Golden Section line search, we first must find an initial bracket and so evaluate (with α =
0.001), h(0), h(α), h(2α), h(4α),. . . . We find h(0.002) = 59.1, h(0.004) = 0.98, h(0.008) =
1236, so our initial bracket is [0.002, 0.008]. Figure 3.4 shows the slice of f which is the

3.3. GRADIENT METHODS 71

-4 -3 -2 -1 0 1 2

-2

-1

0

1

2

3

4

Figure 3.2: The zig-zag path of steepest descent.

function h(t) together with the places we evaluate h in determining this bracket. Implementing
the Golden Section method we then find t0 = 0.00398 and so

~x1 = ~x0 + t0~d0 = [4, 2,−1]T + 0.00398[0, 2,−1024]T = [4, 2.0079,−5.0755]T .

Next, we find ~d1 = −∇f(~x1) = −[0,−1.984,−0.00689]T , and ‖∇f(~x1)‖ = 1.984. To com-
pute ~x2 we need t1 = argmin

t≥0
f(~x1 + t~d1). Figure 3.5 shows the new slice of f and the process of

determining the initial bracket for a line search. Implementing the Golden Section line search,
we find t1 = 0.49996 and so

~x2 = ~x1 + t1~d1 = [4, 2.0079,−5.0755]T + 0.49996[0, 1.984, 0.00689]T

= [4, 2.99992,−5.07206]T .

We find ~d2 = −∇f(~x2) = −[0,−0.00036,−0.006]T , and ‖∇f(~x2)‖ = .005996. Depending
on how accurate we want to be, we could stop or continue. �

EXERCISE 3.12. Prove that if {~xk} is a steepest descent sequence and ∇f(~xk) 6= ~0 then
f(~xk+1) < f(~xk).

EXERCISE 3.13. Let f be a quadratic function of the form

f(~x) =
1

2
~x TQ~x−~b T~x

with Q symmetric and positive definite.

(a) Compute∇f(~x).

72 CHAPTER 3. APPROXIMATE OPTIMIZATION

-4 -2 0 2 4 6

-4

-2

0

2

4

Figure 3.3: The zig-zag path can be very inefficient.

0.000 0.002 0.004 0.006 0.008
0

20

40

60

80

100

Figure 3.4: Determination of the initial bracket for the first line search.

(b) Find the (unique) minimizer of this function (analytically, not by way of an iterative
algorithm).

(c) Defining αk(t) = f(~xk − t∇f(~xk)), find tk = argmin
t≥0

f(~xk + t~dk) by solving (analyti-

cally) α′k(t) = 0.

(d) Thus find the explicit formula for ~xk+1 in this case.

In Mathematica, functions of, say, two variables are declared with the argument being what is
called a sequence. For example

f = Function[{x, y}, x∧2 + y∧2];

results in the function f[x, y]. The input to this function is the sequence x, y. This can
be annoying when we are dealing with points in R2, namely {x, y}. The way f is defined,

3.3. GRADIENT METHODS 73

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3.5: Determination of the initial bracket for the second line search.

f[{x, y}] produces an error. A work-around to this is to define our own function-defining
command which results in a function which takes vectors as input instead of sequences. So, we
define

VFunction[vars , f] := Function[vars, f][Apply[Sequence, #]]&

What this does is define a function using Mathematica’s Function command, but, when
passed a vector, first converts the vector to a sequence so that the function can accept it. I
suggest that you include and execute this command at the beginning of your Mathematica files
and from then on define functions as VFunctions. As an example, if we define

f = VFunction[{x, y}, x∧2 + y∧2];

then f[{a, b}] results in the output a∧2+b∧2 as expected. (Now, f[a, b] will produce
an error.)

It is also clear that we will need commands to compute gradients, and perhaps Hessians, of
functions. Mathematica can do this for us, but because gradients are dependent on choice of
coordinates used and Mathematica wants to accommodate this generality, it is more cumber-
some than it needs to be for us. So, here is some code you can use to compute gradients (see
the Mathematica notebook “Approx Utilities.nb”)

Grad2D[f] := VFunction[{x, y},
{D[f[{x, y}], x], D[f[{x, y}], y]}];

Hess2D[f] := VFunction[{x, y},
{{D[f[{x, y}], x, x], D[f[{x, y}], x, y]},
{D[f[{x, y}], y, x], D[f[{x, y}], y, y]}}];

These commands take pure functions which take vectors as their arguments. In other words,
you should use the above VFunction to define the functions which get fed to Grad2D and

74 CHAPTER 3. APPROXIMATE OPTIMIZATION

Hess2D. You can extend these to define Grad3D and Hess3D (etc.) in the obvious way.
The Mathematica command D[] takes derivatives of the passed function with respect to the
specified variables.

EXERCISE 3.14. Implement (and understand) the following Mathematica code for the steepest
descent algorithm. We assume that you have already encoded:

• GoldenSection[h, p0, tol] (see page 65),

• InitInt[h, t0, α] (page 68),

• VFucntion[vars, f] (page 73),

• Grad2D[f] (page 73).

In the below, x0 is an initial point (a 2D vector), tol is a desired accuracy, and LStol is the
accuracy to be used in the line search – it is the accuracy relative to the length of the initial
interval. (See the Mathematica notebook “Approx SteepestDescent.nb”)

SteepestDescent2D[f , x0 , tol , LStol] :=
Module[
{x, y, a0, b0, XList = {x0}, df, h, dDirs, count = 0},
df = Grad2D[f];
dDirs = {-df[x0]};
While[Norm[Last[dDirs]] > tol && count < 4000,

h = Function[t, f[Last[XList] + t*Last[dDirs]]];
{a0, b0} = InitInt[h,0,1/(100Norm[Last[dDirs]])];
AppendTo[XList,

Last[XList] +
GoldenSection[h, {a0, b0}, LStol(b0 - a0)][[2]]*

Last[dDirs]];
AppendTo[dDirs, -df[Last[XList]]];
count++

];
If[count >= 4000,

Print[‘‘Algorithm did not converge from’’, x0,
‘‘ within 4000 steps; aborting.’’];

AppendTo[XList, {‘‘fail’’}]
];
{XList, {XList[[-1]], count}}

];

Notes:

3.3. GRADIENT METHODS 75

1. df is a local version of Grad2D[f]. It simply facilitates a shorter version of Grad2D[f];

2. XList is the list of points found;

3. dDirs is the list of descent directions; there is no need to keep track of the whole list.
We could replace dDirs = {-df[x0]} by dDir = -df[x0], every occurrence of
Last[dDirs] by dDir, and instead of using AppendTo[] to update, simply set
dDir = ...;

4. h is the function of one variable to which we will apply the line search algorithm;

5. {a0, b0} is set to be the initial interval to use in GoldenSection[]; the “α” to
use is chosen to be 1/(100‖∇f(~xk)‖) as discussed at the end of Section 3.2 above;

6. Included is a “catch” in case the algorithm is failing to converge. This is a good feature
to include. At each iteration, count is incremented. The test in the While[] loop
uses && count<= 4000; the symbol && means “logical and.” If count gets greater
than 4000 (chosen for no particular reason) then the algorithm is forced to terminate and
a message is printed. The last point in XList is set to be {‘‘fail’’}.

7. If we call the results res then res[[1]] consists of the full list of points found; res[[2[[
consists of two pieces of information: the final point found (or {‘‘fail’’}), and the
number of iterations it took, count. This is valuable in comparing algorithms.

Test the code on the function f(x, y) = (x− 1)2 + (y− 2)2 with tol set to 0.0001. Investigate
the effect of setting LStol to values of 0.1, 0.01 and 0.001.

Try implementing SteepestDescent2D[] on the 2D functions in Section 3.5. A good
way to test your algorithm is to first create a grid of start points within the rectangle [x1, x2] ×
[y1, y2]:

StartPoints =
Flatten[Table[{x, y}, {x, x1, x2}, {y, y1, y2}], 1];

(The Flatten[] command reduces the three dimensional table to a two dimensional one.)
Then execute

Map[SteepestDescent2D[f, #, 10∧(-3), 10∧(-4)][[2]]&,
StartPoints]

Here, f is the function, # iteratively gets replaced by the elements of StartPoints (this is
what Map[] does), 10∧(-3) is the accuracy goal, and 10∧(-4) is the accuracy to use in
the line search. Calling the [[2]] component returns only the last point from the algorithm and
the number of steps it took. You will find that the number of steps it takes to converge (if it
does) varies with function, and with starting point. You will also find that for some functions

76 CHAPTER 3. APPROXIMATE OPTIMIZATION

the algorithm converges, but not to the location of the true minimum. You should try different
accuracies: tol = 10∧(-2), tol = 10∧(-3) and tol = 10∧(-3), for example.

You can also try using the (fewer) start-points suggested in Section 3.5. Simply define, for
example,

StartPoints = {{1, 2}, {3, -4}}

in place of the StartPoints code above. �

3.3.3 Newton/Quasi-Newton Method

Newton’s method in 1D uses a quadratic approximation of the function at the current location
and updates to the new location by taking the minimum of this quadratic approximation. This
has two features: the descent direction is (trivially) chosen, and the step-size is determined. In
particular, no line search is used.

Newton’s method in higher D: The second order Taylor approximation for f : Rn → R based
at ~xk is

f(~x) ≈ q(~x) := f(~xk) + (~x− ~xk)T∇f(~xk) +
1

2
(~x− ~xk)TD2f(~xk)(~x− ~xk).

At a minimum for q : Rn → R we must have

~0 = ∇q(~x) = ∇f(~xk) +D2f(~xk)(~x− ~xk)

so if D2f(~xk) > 0 we then set ~xk+1 to be the minimizer of q:

~xk+1 = ~xk −D2f(~xk)
−1∇f(~xk).

Notes: (1) Once again, we are not using a line search here; from position ~xk we go to position
~xk+1 by computing ~dk = −D2f(~xk)

−1∇f(~xk) and setting ~xk+1 = ~xk + ~dk.

(2) On a large problem, rather than find D2f(~xk)
−1 we would solve D2f(~xk)~dk = −∇f(~xk)

by Gaussian elimination.

Newton’s method does not guarantee that the sequence generated is a “descent sequence” – it
may not hold that f(~xk+1) < f(~xk), even if D2f(~xk) > 0. Note that even if we are guaranteed
that at each step we have a descent direction, we might just go too far in that direction. This is
easy to see in examples for functions of one variable. However, if the start point is sufficiently
close to a local minimum, it can be shown that Newton’s method has superior convergence
performance.

3.3. GRADIENT METHODS 77

EXERCISE 3.15. Write Mathematica code to implement Newton’s method in 2D. Use the code
for SteepestDescent2D[] on page 74 as a structural guide. Note that if M is a matrix,
then its inverse can be found by Inverse[M], and if v = {v1, v2} is a vector, the matrix-
vector product of Mwith v is given by M.v. Warning: in SteepestDescent[]we check to
see if we have met the desired tolerance by computing Norm[Last[dDir]]. In the steepest
descent algorithm, the descent direction coincides with ∇f(~xk). Here, however, we have to
compute ‖∇f(~xk)‖.

The problem of not being a descent sequence can be remedied when we consider the following
result:

THEOREM 3.16. Let {~xk} be a sequence generated by Newton’s method. If D2f(~xk) > 0 and
∇f(~xk) 6= ~0 then the direction

~dk = −D2f(~xk)
−1∇f(~xk) = ~xk+1 − ~xk

is a descent direction for f in the sense that there exists t̂ > 0 such that for all 0 < t < t̂,

f(~xk + t~dk) < f(~xk).

Proof. Set h(t) = f(~xk + t~dk); then

h′(0) = ∇f(~xk)
T ~dk = −∇f(~xk)

TD2f(~xk)
−1∇f(~xk).

Now, since D2f(~xk) > 0, the eigenvalues λ1, . . . , λn are all λj > 0; the eigenvalues of
(D2f(~xk))

−1 are 1/λj > 0 and so (D2f(~xk))
−2 > 0 also. Thus the expression above gives

h′(0) < 0. This implies there is t̂ > 0 such that for all 0 < t < t̂, h(t) < h(0). This yields the
result.

Modified Newton’s method: the above motivates:

~dk = −D2f(~xk)
−1∇f(~xk)

tk = argmin
t≥0

f(~xk + t~dk)

~xk+1 = ~xk + tk ~dk;

determination of tk is achieved via a line search as we studied earlier.

EXERCISE 3.17. Write Mathematica code to implement this modified Newton’s method in 2D.
If you have completed Exercise 3.15 then you should be able to modify that code to incorporate
a line search in the manner of the code for SteepestDescent2D[] (page 74).

Quasi-Newton Methods: A drawback of Newton’s method is its requirement that we compute
the Hessian D2f(~xk) at every step (and then, for large n, solving D2f(~xk)~dk = −∇f(~xk) can

78 CHAPTER 3. APPROXIMATE OPTIMIZATION

be computationally expensive also). Quasi-Newton methods use first-derivative information
only to approximate the inverse of the Hessian matrix. If Hk is an approximation to D2f(~xk)

−1

then the update ~xk+1 is defined as for the modified Newton method above,

~dk = −Hk∇f(~xk)

tk = argmin
t≥0

f(~xk + t~dk)

~xk+1 = ~xk + tk ~dk.

So, we see, a quasi-Newton method has the same structure as Newton’s method; the difference
is that instead of using (the inverse of) D2f(~xk) we use an approximation Hk.

We need to come up with a scheme for obtaining the sequence of matricesHk. To come up with
possible schemes, we study what is true of quadratic functions, where we know D2f(~xk) = Q.
We’d like to guarantee that ~xk+1 − ~xk is a descent direction; we’ll now show that this can be
achieved by requiring that Hk be positive definite at each step. We will need the following

notion: (B.7.11) a function f is “little-o” of ‖~x‖r, f(~x) = o(‖~x‖r), if lim
~x→~0

‖f(~x)‖
‖~x‖r

= 0.

If we expand f about ~xk then (by Taylor’s theorem)

f(~xk+1) = f(~xk) +∇f(~xk)
T (~xk+1 − ~xk) + o(‖~xk+1 − ~xk‖)

= f(~xk)− tk∇f(~xk)
THk∇f(~xk) + o(‖Hk∇f(~xk)‖tk)

where we use ~xk+1 − ~xk = tk ~dk = −tkHk∇f(~xk). If ∇f(~xk)
THk∇f(~xk) > 0, which in

turn can be guaranteed by requiring Hk to be positive definite, then the second term is certainly
negative. We just need to verify that, for sufficiently small tk, the error (the o(‖Hk∇f(~xk)‖tk)
term) is smaller than (the absolute value of) the second term. But this is precisely what little-o
means.

How the Hk are determined separates one quasi-Newton method from another. To see how Hk

might be defined, we consider the case where f is a quadratic function f(~x) =
1

2
~x TQ~x−~b T~x,

in which case the Hessian D2f(~x) = Q for all ~x, Q a symmetric n× n matrix. Then

∇f(~xk+1)−∇f(~xk) = Q(~xk+1 − ~xk).

To make the notation a little more manageable, define ∆~gk := ∇f(~xk+1)−∇f(~xk) and ∆~xk :=
~xk+1 − ~xk. For given k, we trivially have

Q−1∆~gi = ∆~xi, for all 0 ≤ i ≤ k

so we impose the same on Hk+1: having determined H0, . . . , Hk we require that

Hk+1∆~gi = ∆~xi, for all 0 ≤ i ≤ k. (3.4)

At the nth step, we obtain

Hn

[
∆~g0, . . . ,∆~gn−1

]
=
[
∆~x0, . . . ,∆~xn−1

]
, or HnG = X, say.

3.3. GRADIENT METHODS 79

The matrix Q−1 also satisfies this equation, so provided the matrix G =
[
∆~g0, . . . ,∆~gn−1

]
is non-singular, after n steps, Hn = XG−1 = Q−1. We will now see the significance of
this: Newton’s method solves quadratic problems in one step (be sure you see why this is the
case!). With the quasi-Newton algorithm above, implementing the (n+1)st step on the quadratic
function f is actually implementing a step of Newton’s method – this last step therefore finds
the minimum. In conclusion, such a quasi-Newton method will find the minimum of a quadratic
function in at most n+1 steps. (In fact it can be shown that such quasi-Newton algorithms solve
quadratic problems in at most n steps.)

We had to assume above that G was non-singular; it can be shown that for quadratic functions
the set of ∆~gj are indeed linearly independent – we’ll see this later when we study “conjugate
gradient methods” of which quasi-Newton methods are an example.

We use this as motivation to impose these conditions on any scheme for determining the Hk

approximations to D2f(~xk)
−1. A standard way to determine Hk+1 is to add a correction to Hk

– note that any matrix can be obtained this way, so this is no restriction. As discussed above,
an additional desirable property is that each of the Hk be positive definite, for then we are
guaranteed that ~xk+1 − ~xk is always a descent direction.

Rank-one correction: We can derive a rank-one correction, which means that Hk+1 = Hk +
~u~u T for some choice of ~u (the matrix ~u~u T has rank one). We leave this as an exercise. It
turns out that rank one corrections aren’t rich enough to change Hk in an efficient way and for
non-quadratic functions, Hk+1 may fail to be positive definite, and then ~dk+1 can fail to be a
descent direction.

DFP Algorithm: (A rank two correction.)

1. Set k = 0; select ~x0 and a real symmetric positive definite matrix H0 (e.g. H0 = I).

2. If∇f(~xk) = ~0 (or ‖∇f(~xk)‖ ≤ ε) stop; otherwise ~dk = −Hk∇f(~xk).

3. Perform a line search (or approximate line search)

tk = argmin
t≥0

f(~xk + t~dk)

and set ~xk+1 = ~xk + tk ~dk.

4. Compute ∆~xk = ~xk+1 − ~xk = tk ~dk, ∆~gk = ∇f(~xk+1)−∇f(~xk), and

Hk+1 = Hk +
∆~xk∆~x

T
k

∆~x Tk ∆~gk
− (Hk∆~gk)(Hk∆~gk)

T

∆~gTkHk∆~gk

= Hk − tk
(Hk∇f(~xk))(Hk∇f(~xk))

T

(Hk∇f(~xk))T∆~gk
− (Hk∆~gk)(Hk∆~gk)

T

∆~g Tk Hk∆~gk

5. Increment k and go to step 2.

80 CHAPTER 3. APPROXIMATE OPTIMIZATION

A comment regarding implementing this in Mathematica: As you’ve seen before, if ~x and ~y are
n-vectors, then ~x T~y is a scalar and is called the (an) inner product of ~xwith ~y. The product ~x~y T ,
however, is an n× n matrix, and is sometimes referred as an outer product. In Mathematica, if
x, y are vectors, we can compute this outer product via Outer[Times, x, y].

We now claim that DFP preserves positive definiteness (though we won’t prove it here):

THEOREM 3.18. Suppose ∇f(~xk) 6= ~0. In the DFP algorithm, if Hk is positive definite, then
so too is Hk+1.

EXAMPLE 3.19. Applying DFP to the quadratics we used to demonstrate the Steepest Descent
algorithm we obtain:

For f(x, y) =
3

2
x2 + 2xy + 2y2 − 4x− 2y, ~x0 = [−3.5, 2]T

-4 -2 0 2 4 6

-4

-2

0

2

4

For f(x, y) =
1

2
x2 + 2xy + 4y2 − 4x− 2y, ~x0 = [−3.5, 2]T

3.3. GRADIENT METHODS 81

-4 -2 0 2 4 6

-4

-2

0

2

4

�

The DFP algorithm improves on the rank one correction; in certain applications it can get
“stuck” if Hk becomes close to singular. Since Hk is supposed to be approximating (D2f)−1,
the inverse of the Hessian matrix, this means, most likely, that the determinant of (D2f)−1 ≈ 0.
In such a case, we might be better off dealing with (D2f) itself. The BFGS algorithm below
takes this approach and can alleviate the problem of the DFP algorithm getting stuck in some
situations.

BFGS Algorithm: Quasi-Newton methods are based on finding matricesH which approximate
the inverse of Q for quadratic functions. Specifically we required

Hk+1∆~gi = ∆~xi, for all 0 ≤ i ≤ k,

which came from Q−1∆~gi = ∆~xi, for all 0 ≤ i ≤ k. But these in turn came from ∆~gi = Q∆~xi.
The BFGS algorithm is simply based on approximating Q (by a sequence Bk) instead of Q−1

and requiring

∆~gi = Bk+1∆~xi, for all 0 ≤ i ≤ k.

One way to come up with such a sequence is to simply interchange the roles of Bk and Hk, and
of ∆~gk and ∆~xk in a way of coming up with a sequence of Hk. If we apply this idea to DFP,
we get BFGS, a scheme to update Bk:

Bk+1 = Bk +
∆~gk∆~g

T
k

∆~g Tk ∆~xk
− (Bk∆~xk)(Bk∆~xk)

T

∆~x Tk Bk∆~xk
.

This is all well-and-good except that what we need is Hk+1 = B−1
k+1 and we recently argued

that inverting a matrix is inefficient. What saves us is that inverting a rank-one perturbation of
a matrix can be done analytically by

(A+ ~u~v T)−1 = A−1 − (A−1~u)(~v TA−1)

1 + ~v TA−1~u
.

82 CHAPTER 3. APPROXIMATE OPTIMIZATION

Thus, looking at the form of Bk+1 we can obtain B−1
k+1 in terms of B−1

k = Hk. It requires
applying this identity twice. One obtains

Hk+1 = Hk +
(

1 +
∆~g Tk Hk∆~gk

∆~g Tk ∆~xk

)∆~xk∆~x
T
k

∆~x Tk ∆~gk
− Hk∆~gk∆~x

T
k + (Hk∆~gk∆~x

T
k)T

∆~g Tk ∆~xk

= −tk
(Hk∇f(~xk))(Hk∇f(~xk))

T

(Hk∇f(~xk))T∆~gk

+
(

1 +
Hk∇f(~xk)∆~g

T
k

(Hk∇f(~xk))T∆~gk

)
Hk

(
1 +

∆~gk(Hk∇f(~xk))
T

(Hk∇f(~xk))T∆~gk

)
.

Apparently, BFGS is more robust even when the line search step is more sloppy and so one can
save time at the line search step by not requiring such high tolerance. The BFGS algorithm is
often more efficient than the DFP algorithm.

REMARK. In implementing a quasi-Newton method on a function f : Rn → R, since the
algorithm is based on achieving Hn = Q−1 (at the nth step) for a quadratic function with
Hessian Q, there is no sense in which Hn+1 is approximating (D2f(~xn))−1. After performing
n steps, we should re-set Hn+1 = In×n.

3.4 Conjugate Gradient Methods

3.4.1 Introduction

The methods we’ve studied so far essentially differ in how we choose our next descent direction
~dk. To judge the efficiency of an algorithm we can consider how well it performs on quadratic
functions. We’ve seen that even for quadratic functions, the steepest descent direction is far
from optimal and can be very slow to converge (this is typified by the “zig-zag” path we saw).
On the other hand, Newton’s method converges quickly (indeed, on quadratic functions it con-
verges in one step!) but requires computation of Hessian matrices. Conjugate gradient methods
lie somewhere in between: they solve quadratic problems in n steps and require no Hessian
computations.

Note: the quasi-Newton methods we presented earlier are in fact themselves conjugate gradient
methods. We will show this later.

We can derive the ideas behind conjugate gradient methods by studying the quadratic function

f(~x) =
1

2
~x TQ~x− ~x T~b.

DEFINITION 3.20. Let Q be a real symmetric n× n matrix. Two directions (vectors) ~d1, ~d2 are
said to be “Q-conjugate” if ~d T1 Q~d2 = 0. Note that what this says when Q = I is that ~d1 and ~d2

are orthogonal. Thus we are requiring ~d1 and ~d2 to be “orthogonal with respect to Q.”

3.4. CONJUGATE GRADIENT METHODS 83

A set of vectors {~dj}mj=1 is said to be Q-conjugate if, for all i 6= j, ~d Ti Q~dj = 0.

LEMMA 3.21. Let Q be a symmetric positive definite n × n matrix. If {~dj}kj=1, k ≤ n are
non-zero and Q-conjugate, then they are linearly independent.

EXERCISE 3.22. Prove the above lemma.

Q-Gramm-Schmidt: If we start with a linearly independent set of vectors, and apply the
Gramm-Schmidt process with inner product defined in terms of Q, then the resulting set of
vectors is a Q-conjugate set. Here we present the Gramm-Schmidt algorithm with respect to
both the standard inner product on Rn and the inner product defined byQ. At the end of Section
3.4.3 we prove that the resulting set of vectors is indeed Q-conjugate.

The regular Gramm-Schmidt process starts with {~v1, . . . , ~vn} linearly independent, sets ~u1 = ~v1

and then

~uk = ~vk −
k−1∑
j=1

~vk · ~uj
~uj · ~uj

~uj.

The resulting set {~u1, . . . , ~un} is an orthogonal set; replacing each ~uj by ~uj/‖~uj‖ results in an
orthonormal set.

Within the above formula is the dot-product – it is an example of an “inner product.” Another
example of an inner product is 〈~x, ~y〉 = ~x TQ~y. (Note that the dot-product is simply this with
Q = I .) We can define a Gramm-Schmidt process with respect to this inner product by: set
~u1 = ~v1, and then

~uk = ~vk −
k−1∑
j=1

~v Tk Q~uj
~u Tj Q~uj

~uj.

EXERCISE 3.23. If {~u1, . . . , ~un} are obtained by applying Q-Gramm-Schmidt to a collection
of linearly independent vectors, then the {~uj} are Q-conjugate.

3.4.2 The basic Conjugate Direction algorithm

Here, we present the algorithm assuming we have some way of coming up with theQ-conjugate
directions ~dk; we address how to find these in the next section. We also restrict our attention to

the quadratic function f(~x) =
1

2
~x TQ~x −~b T~x, Q = QT > 0. (Of course the minimum in this

case is simply found via Q~x ∗ = ~b.) Later, we will apply the same algorithm to functions which
are not quadratic, hoping that the algorithm will still perform well, because all (reasonably nice)
functions are “locally like quadratics.”

84 CHAPTER 3. APPROXIMATE OPTIMIZATION

EXERCISE 3.24. Letting h(t) = f(~x+ t~d), with f(~x) the quadratic function given above, show

that the minimum of h occurs at t = −∇f(~x)T ~d

~d TQ~d
.

Let ~x0 be a starting point and let ~d0, . . . , ~dn−1 be non-zero conjugate directions. (Note, there
can be at most n; why?) For k ≥ 0, define

(∇f(~xk) = Q~xk −~b)

tk = −∇f(~xk)
T ~dk

~d Tk Q
~dk

, (this minimizes a line search by Exercise 3.24 above)

~xk+1 = ~xk + tk ~dk.

LEMMA 3.25. If ~d0, . . . , ~dn−1 are non-zero Q-conjugate directions, and ~xk is defined as above,
then for each 1 ≤ k ≤ n,

∇f(~xk)
T ~dj = 0 for all 0 ≤ j ≤ k − 1.

Proof. Outline:

• True when k = 1: if h(t) = f(~x0 + t~d0) then since t0 minimizes h, 0 = h′(t0) =

∇f(~x1)T ~d0.

• Assuming it is true for k we must show it is true for k + 1. For 0 ≤ j ≤ k − 1 we have

∇f(~xk+1)T ~dj = ~x Tk+1Q
~dj −~b T ~dj since ∇f = Q~x−~b

= (~x Tk + tk ~d
T
k)Q~dj −~b T ~dj since ~xk+1 = ~xk + tk ~dk

= ~x Tk Q
~dj −~b T ~dj since ~d T

k Q
~dj = 0 for j < k

= ∇f(~xk)
T ~dj = 0 by the induction hypothesis.

• What remains is to prove that ∇f(~xk+1)T ~dk = 0; for this mimic the proof of the case
k = 1 above.

In particular, at xn, ∇f(~xn)T ~dj = 0 for all 0 ≤ j ≤ n − 1; but the set of conjugate directions
form a basis for Rn so∇f(~xn) = ~0. Since there is a unique minimizer for the quadratic function
f , ~xn must be it!

3.4. CONJUGATE GRADIENT METHODS 85

3.4.3 The conjugate gradient algorithm – quadratic functions

We haven’t yet addressed the issue of how to find the conjugate directions. The conjugate
gradient algorithm progressively chooses new directions, based on the gradient of f , such that
at each step the “set so far” is Q-conjugate. Once again we are working with the quadratic

function f(~x) =
1

2
~x TQ~x−~b T~x with Q = QT > 0.

• Let ~x0 be an initial point; for the first direction, we take the steepest descent direction
~d0 = −∇f(~x0).

• To get to the next point we thus set ~x1 = ~x0 + t0~d0 where

t0 = argmin
t≥0

f(~x0 + t~d0) = −∇f(~x0)T ~d0

~d T0 Q
~d0

.

(Recall here we have an explicit f for which we can find the minimum.)

• We will show below that the new search direction ~d1, which must be Q-conjugate to ~d0,
is given by

~d1 = −∇f(~x1) + β0
~d0, where β0 =

∇f(~x1)TQ~d0

~d T0 Q
~d0

.

In general,

~dk+1 = −∇f(~xk+1) + βk ~dk, where βk =
∇f(~xk+1)TQ~dk

~d Tk Q
~dk

.

We’ll now derive the above formulae for βk. At the first step, we have ~d0 = −∇f(~x0) and
set ~x1 = ~x0 + t0~d0. We know that ∇f(~x1) is orthogonal to ~d0 (by Lemma 3.25), in particular
linearly independent, so apply Q-Gramm-Schmidt to extend {~d0} to span{−∇f(~x1), ~d0}:

~d1 = −∇f(~x1)− (−∇f(~x1))TQ~d0

~d T0 Q
~d0

~d0 = −∇f(~x1) + β0
~d0, as defined above.

Next, since∇f(~x2) is perpendicular to both ~d0 and ~d1 (again by Lemma 3.25), applyQ-Gramm-
Schmidt to extend {~d1, ~d0} to span{−∇f(~x2), ~d1, ~d0}:

~d2 = −∇f(~x2)− (−∇f(~x2))TQ~d1

~d T1 Q
~d1

~d1 −
(−∇f(~x2))TQ~d0

~d T0 Q
~d0

~d0.

86 CHAPTER 3. APPROXIMATE OPTIMIZATION

The first term is β1; we must show that the second term is zero. We’ll do this in general: at the
kth step,

~dk+1 = −∇f(~xk+1)− (−∇f(~xk+1))TQ~dk
~d Tk Q

~dk

~dk − · · · −
(−∇f(~xk+1))TQ~d0

~d T0 Q
~d0

~d0.

The coefficient of ~dk is βk; we will now show that the coefficient of ~dj is zero for 0 ≤ j ≤ k−1.

LEMMA 3.26. With the {~dj} as defined above,

∇f(~xk+1)TQ~dj = 0

for 0 ≤ j ≤ k − 1.

Proof. Let j ≤ k − 1. Since ~xj+1 = ~xj + tj ~dj , and Q~x = ∇f(~x) +~b (with our explicit f), we
have

Q~dj =
1

tj
Q(~xj+1 − ~xj) =

1

tj

(
∇f(~xj+1)−∇f(~xj)

)
.

Now by construction, both∇f(~xj+1) and∇f(~xj) are in the span of {~d0, . . . , ~dj+1}. By Lemma
3.25,∇f(~xk+1) is perpendicular to ~d0,. . . ,~dj+1 because j+1 ≤ k < k+1. Thus∇f(~xk+1)TQ~dj =
0 as desired.

It remains to prove that the directions ~d0, . . . , ~dn−1 are Q-conjugate.

LEMMA 3.27. The sequence {~dj}n−1
j=0 is Q-conjugate.

Proof. This follows from Exercise 3.23 following the description of Q Gramm-Schmidt.

We now deal with some house-keeping: in deriving the quasi-Newton methods we claimed
earlier that the matrix [∆~g0, . . . ,∆~gn−1] was non-singular, and we claimed at the beginning of
this section that quasi-Newton methods are in fact conjugate gradient methods. We’ll address
these claims now.

Since ∆~gj = ∇f(~xj+1)−∇f(~xj) = Q(~xj+1−~xj) = tjQ~dj , if we show that the set {~d0, . . . , ~dn−1}
is Q-conjugate, then we will have proven the second claim, and we can conclude that the set
{∆~g0, . . . ,∆~gn−1} is linearly independent, thus proving the first claim. The latter follows be-
cause Q-conjugate implies {~d0, . . . , ~dn−1} is linearly independent, and then since Q is non-
singular, this implies {Q~d0, . . . , ~Qdn−1} is linearly independent.

THEOREM 3.28. Let f(~x) =
1

2
~x TQ~x−~b T~x andHk+1 be symmetric matrices withHk+1∆~gj =

∆~xj for 0 ≤ k < n− 1, 0 ≤ j ≤ k. Then with ~dj = −Hj∇f(~xj) and ~xj+1 = ~xj + tk ~dj , the set
~d0, . . . , ~dk+1 is Q-conjugate.

Proof. The proof is outlined in the exercises.

3.4. CONJUGATE GRADIENT METHODS 87

3.4.4 The conjugate gradient algorithm – non-quadratic functions

To extend the CGA to non-quadratic functions, we argue that it should behave similarly near
the minimum because of the quadratic approximation to f . We could apply this directly if we
were willing to compute the Hessian matrix; Q appears in the computation of tk and of βk. We
can replace the formula for tk by a line search algorithm to get an approximate tk. Assuming
we have a scheme to come up with βk we have the algorithm (for f : Rn → R)

1. Set k = 0, choose ~x0.

2. If∇f(~x0) = ~0, stop, otherwise set ~d0 = −∇f(~x0).

3. Perform a line search

tk = argmin
t≥0

f(~xk + t~dk)

and set ~xk+1 = ~xk + tk ~dk.

4. If∇f(~xk+1) = ~0, stop.

5. Compute βk (dependent on choice of scheme).

6. Set ~dk+1 = −∇f(~xk+1) + βk ~dk.

7. Set k = k + 1; go to 3.

As for coming up with βk without computation of a Hessian matrix we present the following
formulae:

Hestenes–Steifel: In the quadratic case,∇f(~xk+1)−∇f(~xk) = tkQ~dk, so we can set

Q~dk =
1

tk

(
∇f(~xk+1)−∇f(~xk)

)
,

and do so even in the non-quadratic case. Replacing this forQ~dk in the formula for βk we obtain

βk =
∇f(~xk+1)T

(
∇f(~xk+1)−∇f(~xk)

)
~d Tk
(
∇f(~xk+1)−∇f(~xk)

) . (3.5)

Polak–Ribiere: In the denominator in (3.5), we observe that ~d Tk ∇f(~xk+1) = 0; furthermore,

∇f(~xk)
T ~dk = ∇f(~xk)

T
(
−∇f(~xk) + βk−1

~dk−1

)
= −∇f(~xk)

T∇f(~xk)

88 CHAPTER 3. APPROXIMATE OPTIMIZATION

by the same argument. Thus

βk =
∇f(~xk+1)T

(
∇f(~xk+1)−∇f(~xk)

)
∇f(~xk)T∇f(~xk)

. (3.6)

Fletcher–Reeves:

LEMMA 3.29. Let {~xj} be a sequence of points generated by way of a conjugate gradient
method. Then for 0 ≤ k ≤ n− 1, 0 ≤ j ≤ k − 1,∇f(~xk+1)T∇f(~xj) = 0.

Proof. From the claim in Section 3.4.2,

0 = ∇f(~xk+1)T ~dj = −∇f(~xk+1)T∇f(~xj) + βj−1∇f(~xk+1)T ~dj−1

⇒ ∇f(~xk+1)T∇f(~xj) = 0. (3.7)

By (3.7),∇f(~xk+1)T∇f(~xk) = 0. Applying this to (3.6) we obtain

βk =
∇f(~xk+1)T∇f(~xk+1)

∇f(~xk)T∇f(~xk)
. (3.8)

REMARK. Note that all the above are derived from the quadratic case, so there’s really no
sense of the vectors ~dk being Q conjugate (what Q?). If we are close to the minimum, however,
then they could be close to being Q-conjugate where Q is the Hessian matrix at the minimum.
Furthermore, as was the case for quasi-Newton methods, the algorithm really only makes sense
for n steps; for this reason, and because of numerical “wandering” it is usual to run the algorithm
for n steps, then re-set βn = 0 so that we start again in a steepest descent direction.

3.5 Test functions

We present here some functions of two, three and four variables on which to implement the
algorithms discussed. See the Mathematica notebook “Approx Test Functions.nb”.

88 CHAPTER 3. APPROXIMATE OPTIMIZATION

by the same argument. Thus

βk =
∇f(~xk+1)T

(
∇f(~xk+1)−∇f(~xk)

)
∇f(~xk)T∇f(~xk)

. (3.6)

Fletcher–Reeves:

LEMMA 3.29. Let {~xj} be a sequence of points generated by way of a conjugate gradient
method. Then for 0 ≤ k ≤ n− 1, 0 ≤ j ≤ k − 1,∇f(~xk+1)T∇f(~xj) = 0.

Proof. From the claim in Section 3.4.2,

0 = ∇f(~xk+1)T ~dj = −∇f(~xk+1)T∇f(~xj) + βj−1∇f(~xk+1)T ~dj−1

⇒ ∇f(~xk+1)T∇f(~xj) = 0. (3.7)

By (3.7),∇f(~xk+1)T∇f(~xk) = 0. Applying this to (3.6) we obtain

βk =
∇f(~xk+1)T∇f(~xk+1)

∇f(~xk)T∇f(~xk)
. (3.8)

REMARK. Note that all the above are derived from the quadratic case, so there’s really no
sense of the vectors ~dk being Q conjugate (what Q?). If we are close to the minimum, however,
then they could be close to being Q-conjugate where Q is the Hessian matrix at the minimum.
Furthermore, as was the case for quasi-Newton methods, the algorithm really only makes sense
for n steps; for this reason, and because of numerical “wandering” it is usual to run the algorithm
for n steps, then re-set βn = 0 so that we start again in a steepest descent direction.

3.5 Test functions

We present here some functions of two, three and four variables on which to implement the
algorithms discussed. See the Mathematica notebook “Approx Test Functions.nb”.

3.5. TEST FUNCTIONS 89

1. Beale Function: f(x, y) = (1.5− x− xy)2 + (2.5− x+ xy2)2 + (2.625− x+ xy3)2.
Search region: [−3, 3]× [−3, 3].
Search start-points: [2.5,−0.3], [3,−1], [−1, 1], [1, 1]
Note: The minimum is near [2.6,−0.35]T ; there are three other locations where∇f = ~0.

90 CHAPTER 3. APPROXIMATE OPTIMIZATION

2. Booth Function: f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2.
Search region: [−3, 4]× [−3, 2].
Search start-points: [1.5, 2.5], [2, 2], [0, 0], [0, 4]
Note: There is a unique place where∇f = ~0, but it can be tricky to find numerically. Newton’s
method will, of course, find it since the function is a quadratic.

3. Hump Function: f(x, y) = 4x2 − 2.1x4 +
1

3
x6 + xy − 4y2 + 4y4.

Search region: [−2, 2]× [−2, 2].
Search start-points: [0, 0.5], [0, 1], [−1, 2], [2, 2]
Note: There are 15(!) locations where ∇f = ~0, although they come in pairs since f(x, y) =
f(−x,−y). The true minimum is close to ±[0.1,−0.7]T .

3.5. TEST FUNCTIONS 91

4. 2D Perm Function 1: f(x, y) =
2∑

k=1

2∑
i=1

(ik + 10)
((xi

i

)k − 1
)

.

Search region: [0, 3]× [0, 3].
Search start-points: [0.8, 2.2], [0.5, 2.5], [1.5, 1.5], [2, 2], [0, 0], [3, 3]
Note: There are three places where ∇f = ~0 and the values of the function at two of these is 0
and at the third is 0.003.

5. 2D Perm Function 2: f(x, y) =
2∑

k=1

2∑
i=1

(i+ 10)
(
xki −

(1

i

)k).

Search region: [−1, 2]× [−1, 2].
Search start-points: [0.8, 0.3], [0.5, 1], [0, 0], [0, 1], [−1, 2]
Note: Again, there are three places where∇f = ~0 and the values of the function at two of these
is 0 and at the third is 0.63.

92 CHAPTER 3. APPROXIMATE OPTIMIZATION

6. Easom Function: f(x, y) = − cosx cos y exp(−(x− π)2 − (y − π)2).
Search region: [−1, 5]× [−1, 5].
Search start-points: [3, 3], [3.5, 3.5], [3, 4], [1, 2]
Notes: The function is very flat away from the hole; furthermore, as we can see in the second
plot below, there are “ripples” around the edge of the sink-hole. Close to the minimum, however,
it is well-behaved. The true minimum is at [π, π]T .

7. 3D Sum of Squares: f(~x) =
3∑
i=1

x2
i ;

Search region: [−2, 2]× [−2, 2]× [−2, 2]
Search start-points: [1, 1, 1], [4, 3, 5], [8,−8, 6]
Note: The minimum is clearly at [0, 0, 0]T .

8. 3D Perm Function: f(~x) =
2∑

k=1

2∑
i=1

(i+ 10)
(
xki −

(1

i

)k);

Search region: [−3, 3]× [−3, 3]× [−3, 3]
Search start-points: [0.9, 0.6, 0.4], [0.8, 0.7, 0.5], [0.7, 0.8, 0.6]
Note: There are 11(!) places where ∇f = ~0, and at many of these, the value of f is very

3.6. EXERCISES 93

close to zero. The true minimum is at [1, 1/2, 1/3]T .

9. 4D Rosenbrock function: f(~x) =
3∑
i=1

(
100(x2

i − xi+1)2 + (xi − 1)2
)

;

Search region [−5, 10]4

Search start-points: [1, 2, 3, 4], [−3,−5, 6, 7]
Note: The true minimum is at [1, 1, 1, 1]T .

10. 4D Power Sum Function: f(~x) =
4∑

k=1

(4∑
i=1

x4
i − bk

)2

,~bk = [8, 18, 44, 114]T ;

Search region: [0, 4]4

Search start-points: [0.8, 2.2, 2.3, 2.8], [0.5, 1.5, 2.5, 2]
Note: The true minimum is at [1, 2, 2, 3]T .

11. No Name Function: f(~x) =
4∑
i=1

4∑
j=1

(ij + 10)
((xi

i

)j − 1
)

;

Search region: [−3, 3]4

Search start-points: [−0.5,−1,−1,−1], [0, 0, 0, 0], [−1,−2,−2,−2], [10, 10, 10, 10]
Note: This true minimum is close to [−0.6,−0.94,−0.97,−0.95]T .

3.6 Exercises

1. Exercise 3.2, page 61; see Exercise 6 below.

2. Exercise 3.3, page 62.

3. Exercise 3.5, page 65; see Exercise 6 below.

4. Exercise 3.6, page 67.

5. After completing Exercise 3.5, page 65, modify your code to implement the Fibonacci
search method; see Exercise 6 below.

6. Let f(t) = log t + 6t, t > 0. A plot of f will show that f has a zero between 0 and

1 and that f is increasing there. Thus, by defining F (t) =

∫ t

a

f(s) ds for any a, we

see that the zero of f coincides with the minimum of F . Compute F (t) (there is an
advantageous choice of a) and implement the following algorithms (by hand) to search
for this minimum:

(a) Perform several iterations of the Fixed Step algorithm (by hand) starting with t0 =
0.3 and an initial step size of 0.2.
Now implement the FixedStep[] code given on page 59 and compare your
answers.

94 CHAPTER 3. APPROXIMATE OPTIMIZATION

(b) Perform a few iterations of Newton’s Method (by hand) starting with x0 = 1.0.
After having completed exercise 3.2, page 61, implement your Mathematica code
and compare your answers.

(c) Perform the first three iterations of the Golden Section method, starting with the
initial interval [0.1, 0.4].
After having completed exercise 3.5, page 65, implement your Mathematica code
and compare your answers. Implement your code to obtain the best approximation
to the minimum using 8 iterations.

(d) Assuming that you are seeking an accuracy of no more than 0.01, perform the first
three iterations of the Fibonacci method, starting with [0.1, 0.4].
After completing Exercise 5 above, implement your own code to compare these first
three iterations, and to compute further iterations.

7. Define f(t) =

∫ t

0

es
3 sin t ds.

(a) Compute f ′(t) and recognize that it is impossible to analytically solve for f ′(t) = 0
as a way of finding a minimum.

In fact, f(t) has a unique minimum in [−4,−1]. In Mathematica, define the pure function

f = Function[t, NIntegrate[Exp[Sin[t]s∧3], {s, 0, x}]]

where we have used NIntegrate[] for numerical integration since we cannot find a
closed form anti-derivative of the integrand. Find the minimum of f to within the given
accuracy using each of your algorithms for:

(b) Fixed Step – find t so that |f ′(t)| < 10−2. Use NumberForm[results, 8] to
display results with up to 8 digits;

(c) 1D Newton’s method – again find t so that |f ′(t)| < 10−2. Note: you should find that
this methods fails unless you give an initial point quite close to the true minimum.;

(d) Golden Section line search – find the minimum point to within 10−4;

(e) Fibonacci line search – find the minimum point to within 10−4.

8. For each of the following functions and initial points,

• implement your Golden Section code (see page 65);

• implement your code for the Fibonacci search method.

In each case, find the minimum to within 0.01. You will need to use the suggested algo-
rithm on page 68 to obtain an initial interval.

(a) f(t) = t4 − t2 + t− 1, t0 = 1.

(b) g(t) = t16 + 3t14 − t7 − 3, t0 = −1.

3.6. EXERCISES 95

(c) h(t) =

∫ t

−1

ses + s− 1

2es + 3
ds, t0 = −1. (Note: you will need to use a numerical

integration to evaluate h.)

9. Let f(t) =
1

100
(t6 − 30t4 + 192t2 + 7t3).

(a) Using Newton’s Method with t0 = −8 yields −4.13578, and with t0 = −3 yields
−1.86514. Explain!

(b) Use your Golden Section code to perform 8 iterations, starting with [−8,−3].

(c) Use your Fibonacci code assuming that you are willing to perform 8 iterations, start-
ing with [−8,−3]; compare the accuracy to that of Golden Section. (To determine
the accuracy, you will need to know the true location of the minimum – you could
try running Golden Section for a very large number of iterations to obtain very high
accuracy. You can also use the Mathematica function
FindRoot[f’[t], {t, t0}]]
where t0 is an initial guess.)

10. In the Fibonacci search method we claimed that the optimal choice of ρ1, ρ2, . . . ρN was

ρ1 = 1− FN+1

FN+2

, . . . , ρk = 1− FN−k+2

FN−k+3

, . . . , ρN = 1− F2

F3

.

Here, F−1 = 0, F0 = 1 and Fk+1 = Fk + Fk−1. More precisely, this sequence minimizes
(1 − ρ1)(1 − ρ2) · · · (1 − ρN) subject to ρk+1 = 1 − ρk

1− ρk
, k = 1, . . . , N − 1 and

0 ≤ ρk ≤
1

2
, k = 1, . . . , N . If rk = 1− ρk we re-pose this as

minimize r1 · · · rN

subject to rk+1 =
1

rk
− 1, k = 1, . . . , N − 1

1

2
≤ rk ≤ 1, k = 1, . . . , N.

(a) Show that the constraint rk ≤ 1 can be dropped (it is implied by the other con-
straints).

(b) Prove: Lemma 1. For k ≥ 2, rk = −Fk−2 − r1Fk−1

Fk−3 − r1Fk−2

.

(c) Prove: Lemma 2. For k ≥ 2, (−1)k(Fk−2 − r1Fk−1) > 0.

(d) Prove: Lemma 3. For k ≥ 2, Fk−2Fk+1 − Fk−1Fk = (−1)k.

Accept without proof (prove it if you wish, it’s not hard, just uninteresting):

Lemma 4. For k ≥ 2, (−1)k+1r1 ≥ (−1)k+1 Fk
Fk+1

.

(e) Prove that r1 · · · rN ≥
1

FN+1

.

96 CHAPTER 3. APPROXIMATE OPTIMIZATION

Thus, since choosing r1 =
FN+1

FN+2

(and the rest of the rk accordingly) actually achieves

this bound, this sequence is optimal.

11. The bisection method finds the zero of a function h(t), starting with the interval [a0, b0]
with h(a0) and h(b0) of differing signs. This can be used to find the minimum of a
differentiable function starting with the interval [a0, b0] with h′(a0) > 0 > h′(b0), say.
With c = (a0 + b0)/2, the midpoint of the interval, we compute h′(c) and, depending
on the sign of h′(c), set [a1, b1] = [a0, c] or [a1, b2] = [c, b0] so that the zero of h′(t) lies
within the new interval. The minimum number of function evaluations which can be used
to estimate h′(c) is two; assuming this, show that the bisection method is less efficient
than the Golden Section method by finding inequalities analogous to (3.1) and (3.2).

12. Exercise 3.12, page 71.

13. Exercise 3.13, page 71.

14. Exercise 3.14, page 74.

15. Exercise 3.15, page 77 (Newton2D). Test your code on the Beale, Hump, Perm 1, and
Perm 2 functions from Section 3.5. Use the suggested start-points. Use a search tolerance
of 10−2.

16. Exercise 3.17, page 77 (ModifiedNewton2D). Test your code on the Booth, Hump, Perm
1 and Perm 2 functions from Section 3.5. Use the suggested start-points. Use a search
tolerance of 10−3 and a line search tolerance of 10−3. Note that the Booth function is
quadratic, so Newton’s method would give the exact minimum in one step. Compare the
performance of modified Newton’s method to Newton’s method from Exercise 15 in the
cases of the Hump, Perm 1 and Perm 2 functions.

17. Exercise 3.22, page 83.

18. Exercise 3.23, page 83.

19. Exercise 3.24, page 84.

20. In the section on quasi-Newton methods, it was mentioned that (page 79) quasi-Newton
methods are in fact conjugate gradient methods. What this means is, when applied to a
quadratic function, the set of descent directions {~dk} is a Q-conjugate set, where Q is the
Hessian matrix. More precisely,

THEOREM 3.30. Let f(~x) =
1

2
~x TQ~x −~b T~x, where Q = QT . Assume that for 0 ≤ k <

n− 1, Hk are symmetric matrices satisfying

Hk+1∆~gj = ∆~xj, 0 ≤ j ≤ k,

where ∆~gj = ∇f(~xj+1) − ∇f(~xj) and ∆~xj = ~xj+1 − ~xj . With ~d0 = −∇f(~x0) and
~dj = −Hj∇f(~xj) for j > 0, and ~xj+1 = ~xj + tj ~dj (tj > 0 found as usual), the set
{~d0, . . . , ~dk+1} is Q-conjugate.

3.6. EXERCISES 97

Prove this theorem. (Hint: use induction; when k = 0 it will be useful to show that
∆~g0 = Q∆~x0 and to use ~d0 = ∆~x0/t0. In all cases you will need to use Lemma 3.25.)

21. In Quasi-Newton methods, one needs a way to update Hk to Hk+1 so that (3.4), page 78
holds. In this exercise you will derive a rank-one correction. Let ∆~gi and ∆~xi be defined
as on page 78 and define Hk+1 = Hk + ~u~u T .

(a) Show that requiring Hk+1∆~gk = ∆~xk implies ~u =
∆~xk −Hk∆~gk

~u T∆~gk
.

(b) Show that

~u~u T =
(∆~xk −Hk∆~gk)(∆~xk −Hk∆~gk)

T

(~u T∆~gk)2
.

(c) Derive (~u T∆~gk)
2 = ∆~g Tk (∆~xk −Hk∆~gk), and hence the rank-one correction

Hk+1 = Hk +
(∆~xk −Hk∆~gk)(∆~xk −Hk∆~gk)

T

∆~g Tk (∆~xk −Hk∆~gk)
. (3.9)

(d) Suppose that the function to which we apply the above update formula is the quadratic

function f(~x) =
1

2
~x TQ~x −~b T~x, so that ∆~gi = Q∆~xi for all i. Show that in fact

Hk+1∆~gi = ∆~xi for all 0 ≤ i ≤ k (we have shown it holds when i = k above) by
induction, as follows.

i. Explain why it holds when k = 0.
ii. Assume that Hk∆~gi = ∆~xi, i < k, holds for some k > 0. In order to show that

Hk+1∆~gi = ∆~xi, deduce that it suffices to show that

(∆~xk −Hk∆~gk)
T∆~gi = ∆~x Tk ∆~gi −∆~g Tk Hk∆~gi = 0. (3.10)

iii. Use the induction hypothesis and the fact that f is quadratic to show that

∆~g Tk Hk∆~gi = ∆~g Tk ∆~xi = ∆~x Tk ∆~gi (3.11)

thus completing the proof.

22. Let Q be an n × n real symmetric matrix. Suppose that Q is positive definite. Let
{~d1, . . . , ~dn} be a Q-conjugate set which is also orthogonal (i.e. both ~d Ti Q

~dj = 0 and
~d Ti
~dj = 0, i 6= j).

(a) Show that, if ~di 6= ~0 (for every i = 1, . . . , n) then ~di is an eigenvector of Q.

(b) What are the corresponding eigenvalues? (It’s clearly possible to answer (a) and (b)
at the same time, but there are easier ways of answering (a) without needing to find
the eigenvalues.)

23. Let f(x, y) =
5

2
x2 +

1

2
y2 + 2xy − 3x− y.

98 CHAPTER 3. APPROXIMATE OPTIMIZATION

(a) Express f in the form f(~x) =
1

2
~x TQ~x−~b T~x.

(b) Find the minimizer of f using the conjugate gradient algorithm with ~x0 = (0, 0).
(Note: you know how quickly this should converge!)

(c) Calculate the minimizer of f analytically from Q and ~b and check it against your
answer in (b).

24. Let f(x, y) = 2x2 − 2xy + y2 + 2x − 2y. Perform two iterations of the quasi-Newton
method “DFP” with ~x0 = [1, 0]T and H0 = I2×2. At the line search step, use the exact
minimizer (since it is a quadratic function).

25. Prove Theorem 3.28, page 86. (Hints: Use induction; the set {~d0} is triviallyQ-conjugate;
assume that {~d0, . . . , ~dk} isQ-conjugate, k < n−1; prove that ~d Tk+1Q

~dj = 0 for arbitrary
0 ≤ j ≤ k. To do this, first prove that ~d Tk+1Q

~dj = −∇f(~xk+1) T ~dj , and then use Lemma
3.25.)

26. Write Mathematica code to implement the following algorithms in two dimensions: (Note
that having written code for one algorithm, the code for others should be obtainable by
way of small modifications to the initial code.)

(a) Quasi-Newton using the rank-one correction given in by equation (3.9) in Exercise
21.

(b) DFP;

(c) BFGS;

In each of the algorithms which require a line search, use your code for Golden Section
outlined on page 65.

Try these algorithms on the functions of Section 3.5 and compare their performance to
modified Newton’s method.

27. Extend your codes of Exercises 15, 16 and 26 to handle functions of three variables. Test
the algorithms on the 3D Perm and SumOfSquares functions of Section 3.5. Use the
suggested start-points, search tolerance of 10−3 and line search tolerance of 10−3.

28. Extend your codes of Exercise 26 to handle functions of four variables. Test the algo-
rithms on all three 4D functions in Section 3.5. Use the suggested start-points. First try a
search tolerance of 10−2 and line search tolerance of 10−3, then try a search tolerance of
10−3 and line search tolerance of 10−4.

29. Solve Problem 5a in Chapter 1 for a rectangle of dimensions ϕ×1 where ϕ = (1+
√

5)/2.

30. Solve Problem 5b in Chapter 1 for a box of dimensions 2× 3× 4.

31. Solve the first of Problem 6 in Chapter 1:

Given S2 find c2 which satisfies (1.1) by using the Golden Section line search to minimize
h(c2) = (f(c2)− S2)2 where f is given by the right-hand-side of (1.1). Try to determine

3.6. EXERCISES 99

what you should use as an initial bracket. You should define

f = NIntegrate[LegendreP[2, Cos[θ]]
Exp[#LegendreP[2, Cos[θ]]]Sin[θ], {θ, 0, π}]/

NIntegrate[Exp[#LegendreP[2, Cos[θ]]] Sin[θ],
{θ, 0, π}]&

and you can check your solution c2 by computing f[c2] and comparing it to the S2 you
start with.

Notes: LegendreP[n, x] is the nth Legendre polynomial (as a function of x); # is
the place-holder for the variable, since we are defining a pure function; the & at the end de-
clares the function as a pure function: h = #∧2& is shorthand for h = Function[#∧2].

32. Solve the second of Problem 6 in Chapter 1: Given S2 and S4, find c2 and c4 which satisfy
both (1.2) and (1.3) by minimizing (S2−f1(c2, c4))2 +(S4−f2(c2, c4))2, where f1(c2, c4)
and f2(c2, c4) are the right hand sides of (1.2) and (1.3), respectively.

Notes

• You will need to write a new version of (for example) DFP2D[] for this problem.
Since the function f will be given in terms of a numerical integral, Mathematica
cannot compute derivatives (for example). You will need to build specific infor-
mation about f into the algorithm. It is quite reasonable not to define f as a pure
function here since we are not passing it as an argument for a module. You should
define your functions with delayed evaluation.

• Define two functions (similar to f in Exercise 31 above) for (1.2) and (1.3):

f1[{c2 , c4 }] :=
NIntegrate[LegendreP[2, Cos[θ]]

Exp[c2 LegendreP[2, Cos[θ]]+c4 LegendreP[4, Cos[θ]]]
Sin[θ], {θ, 0, π},
Method -> {Automatic, ’’SymbolicProcessing’’ -> 0}]/

NIntegrate[
Exp[c2 LegendreP[2, Cos[θ]]+c4 LegendreP[4, Cos[θ]]]
Sin[θ], {θ, 0, π},
Method -> {Automatic, ’’SymbolicProcessing’’ -> 0}];

and similarly for f2. Note the use of Method -> This forces Mathematica
to not try to do any symbolic manipulation, which slows the function evaluation
down catastrophically.

• Compute the derivatives and define four functions to be
∂f1

∂c2
,
∂f1

∂c4
,
∂f2

∂c2
,
∂f2

∂c4
. You

100 CHAPTER 3. APPROXIMATE OPTIMIZATION

could name them d1f1, d2f1, d1f2, d2f2. For example,

∂f1

∂c2
=

∫ π
0
P2(cos θ)2 exp

[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ∫ π

0
exp
[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ

−

(∫ π
0
P2(cos θ) exp

[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ

)2

(∫ π
0

exp
[
c2P2(cos θ) + c4P4(cos θ)

]
sin θ dθ

)2

• When Mathematica performs numerical integration, especially when the integrand
is oscillatory (sin, cos), it will fail to reach the level of accuracy it desires and so will
report “error” messages. Here, we are not too concerned with very high accuracy
and so it is convenient to turn these messages off using

Off[NIntegrate::ncvb];
Off[NIntegrate::slwcon];

It is good practice to turn them back on when you are done:

On[NIntegrate::ncvb];
On[NIntegrate::slwcon];

• Given S2, S4 you will need to define the objective function, its derivatives, and
its gradient:

f[{c2 , c4 }] := (S2 - f1[{c2, c4}])∧2
+ (S4 - f2[{c2, c4}])∧2

d1f[{c2 , c4 }] := -2(S2 - f1[{c2, c4}])d1f1[{c2, c4}]
-2(S4 - f2[{c2, c4}])d1f2[{c2, c4}]

d2f[{c2 , c4 }] := ...
df[{c2 , c4 }] := ...

• You will need modify the code for the InitInt[] algorithm to avoid computing
the derivative of the passed function (assume that the direction passed is indeed a
descent direction):

InitInt[h , t0 , α] := Module[{k = 0, L = {t0}, t, αloc = α},
(* ensure sufficiently small step *)
While[h[t0+αloc] >= h[t0], αloc = αloc/2];
While[h[L[[-1]]] > h[t0+2∧k αloc],

AppendTo[L, t0+2∧k αloc];
k++];

AppendTo[L, t0+2∧k αloc];
Sort[{L[[-3]],L[[-1]]}]

]

Chapter 4

Variational Problems

4.1 Introduction

Consider some examples first:

• The Brachistochrone Problem: A ball is to slide along a frictionless track from the
point (0, Y) to (X, 0) affected only by gravity. What shape should the track be so as to
minimize the time it takes?

• Let S be a surface of revolution in R3 and let ~x and ~y be two points on S. What path
joining x to y has the shortest distance (within S)? Such a path is called a geodesic.

• Given two circles perpendicular to the x-axis at, say x = a and x = b of radii ra and rb,
what curve y = f(x) is such that when revolved about the x-axis, the resulting surface
has minimal surface area, subject to the surface meeting up with the two circles?

• More generally, if we have a “distorted wire ring” what surface, meeting up with the ring,
will have the minimal surface area?

• What shape will a cable, hung between two supports, make when the only force acting on
it is due to its own weight?

The feature that all these problems have in common is that the minimizer is not a vector in Rn

but rather a function within some restricted class of functions. For the first example, we seek
y = f(x) with f(0) = Y , f(X) = 0, and we might require that f ∈ Ck([0, X]) (for k = 1 or
2). For the second example we seek a parameterized curve ~r(t) = (x(t), y(t), z(t)) such that
~r(t) ∈ S for all t, and ~r(0) = ~x, ~r(T) = ~y.

101

102 CHAPTER 4. VARIATIONAL PROBLEMS

Before seeking a solution to any of these problems, we formulate each of them as an opti-
mization problem. This will indicate the general form of the type of problem we are interested
in.

Straight line

Perhaps the simplest variational problem we can pose is: what path between points (x0, y0) and
(x1, y1) in the plane has the shortest length? If we assume that x0 6= x1, and we make the, quite
reasonable, assumption that the curve will be the graph of a function, y = y(x), then the length
of the path is calculated by integrating

√
1 + (y′)2 and we obtain the problem:

minimize
∫ x1

x0

√
1 + (y′)2 dx, subject to (y(0), y(L)) = (y0, y1). (4.1)

EXERCISE 4.1. Prove that if ~r(t) = (x(t), y(t)) is a curve from (x0, y0) to (x1, y1) (x1 > x2,
say) for which the trace is not the graph of a function (fails the “vertical line test”) then ~r(t)
cannot minimize arc-length between (x0, y0) and (x1, y1). This is more difficult than it might
appear. First show that if there are t1 < t2 such that x(t1) = x(t2) then the optimal path must
include the vertical line from (x(t1), y(t1)) to (x(t2), y(t2)). Then show that such a curve cannot
be optimal by modifying it to omit the vertical segment and be of shorter length.

Geodesics on a cylinder

A generalization of the problem of finding the shortest path between two points in the plane (or
in space) is that of finding the shortest path between two points on a surface, always remaining
on the surface. A particular example of this is to consider a cylinder, C, for example x2+y2 = 1.
Without loss of generality, let P = (1, 0, 0) ∈ C and let Q be another point on C. If we use
cylindrical coordinates (r, θ, z) = (1, θ, z), P = (1, 0, 0) and Q = (1, θ1, z1) we can assume,
without loss of generality, that 0 ≤ θ1 ≤ π, and once again it is reasonable to expect the
minimizing curve to be monotonic in θ, that is, z can be expressed as a function of θ, z(θ). (A
proof of this result is equivalent to Exercise 4.1.) The problem then becomes identical to (4.1):

minimize
∫ θ1

0

√
1 + (z′)2 dθ, subject to (z(0), z(θ1)) = (0, z1). (4.2)

The Brachistochrone problem

In common with the previous examples, we assume that the optimal path will be monotonic
in x, that the curve can be given as the graph of a function y(x). When the bead is at po-
sition x, let its speed be given by v(x). Then, over an interval ∆x the bead will move a

4.1. INTRODUCTION 103

distance of (approximately) ∆s in time ∆s/v(x). On the other hand, the distance it moves
is given by ∆s ≈

√
1 + (y′(x))2∆x and so the time it takes to move ∆x is (approximately)√

1 + (y′(x))2/v(x) ∆x. Summing over all ∆x intervals we obtain a Riemann sum, and then,
in the limit, the total time the bead takes to travel along the curve y(x) from (0, Y) to (X, 0) is∫ X

0

√
1 + (y′(x))2

v(x)
dx. (4.3)

Now we must determine v(x) based on the fact that the only force acting on the bead is due
to gravity. We use conservation of energy, and it is convenient to take “zero” potential energy
on the x-axis. At (0, Y) the bead is at rest and so has zero kinetic energy, and has potential
energy of mgY (where m is its mass, and g is the constant acceleration due to gravity). At

any point (x, y(x)) along the curve, its kinetic energy is
1

2
mv2 and its potential energy is mgy.

Conservation then implies

1

2
mv(x)2 +mgy = mgY ⇒ v =

√
2g(Y − y).

Plugging this into (4.3) yields ∫ X

0

√
1 + (y′(x))2

2g(Y − y)
dx.

It is clear that the minimizing function y will be the same if we “choose” 2g = 1. We obtain:

minimize
∫ X

0

√
1 + (y′(x))2

Y − y
dx subject to (y(0), y(X)) = (Y, 0). (4.4)

Notice that, unlike equations (4.1) and (4.2), the integrand in (4.4) depends on both y(x) and
y′(x). The same is true in (4.5) below.

Minimal surface of revolution

Consider finding a function u(x) with u(a) = A, and u(b) = B such that the surface obtained
by revolving u(x), a ≤ x ≤ b, about the x-axis has minimal surface area, among all such
functions. From first year calculus, we thus obtain

minimize
∫ b

a

u(x)
√

1 + (u′(x))2 dx subject to (u(a), u(b)) = (A,B). (4.5)

Hanging cable

Another feature of the examples thus far is that the constraints have all been in the form of
boundary conditions. Suppose we have a uniform density cable of length L which is to be hung

104 CHAPTER 4. VARIATIONAL PROBLEMS

between equal-height supports distance 2D apart. Physically, the cable takes the form which
minimizes the total potential energy. Let the resulting form be given by u(x), −D ≤ x ≤ D. If
the density of the cable is ρ kg/m, then the potential energy of a segment corresponding to ∆x
is mgu(x) ≈ ρ

√
1 + (u′(x))2∆x g u(x); the total potential energy of the cable is then given by∫ D

−D
ρ g u(x)

√
1 + (u′(x))2 dx.

Apart from the boundary conditions u(−D) = u(D) = 0, say, we also require the length to be
L. Since the minimal function will be independent of ρ or g, we obtain

minimize
∫ D

−D
u(x)

√
1 + (u′(x))2 dx subject to u(−D) = u(D) = 0, and (4.6)∫ D

−D

√
1 + (u′(x))2 dx = L. (4.7)

4.2 Formulation and the Euler-Lagrange equation

Motivated by the form of the resulting optimization problems (equations (4.1, 4.2, 4.4, 4.5,
4.6)), we introduce the general formulation of a variational problem, and we will now see why
these problems are called variational. In all the examples presented, the optimal function was
a function of one variable. We present the theory for functions of several variables, though we
will restrict our examples to single variable cases.

We seek the minimum of

I(u) =

∫
Ω

F (~x, u(~x),∇u(~x)) d~x

where Ω ⊂ Rn, u : Ω → R is differentiable, and there is some constraint imposed on the class
of admissible u.

The integrand is called the Lagrangian,

F : Ω× R× Rn → R.

When the problem is one-dimensional we have Ω = (a, b) ⊂ R,

I(u) =

∫ b

a

F (x, u(x), u′(x)) dx.

Each problem comes with its constraints, the form of which vary from problem to problem.
We have seen examples with fixed, one-dimensional, boundary conditions, and an integral con-
straint.

4.2. FORMULATION AND THE EULER-LAGRANGE EQUATION 105

We use the variables (~x, λ, ~ξ) ∈ Ω × R × Rn for the Lagrangian: F (~x, λ, ~ξ). (That is: λ is the
(scalar) variable corresponding to u(~x) ∈ R; and ~ξ is the (vector valued) variable corresponding
to ∇u(x) ∈ Rn). We assume F is differentiable with respect to ~x and twice differentiable with
respect to both λ and ~ξ.

Examples: The Lagrangians corresponding to the examples presented in Section 4.1 are:

Equations (4.1) and (4.2): F (x, λ, ξ) = F (ξ) =
√

1 + ξ2

Equation (4.4): F (x, λ, ξ) = F (λ, ξ) =

√
1 + ξ2

Y − λ
Equation (4.5) and (4.6): F (x, λ, ξ) = F (λ, ξ) = λ

√
1 + ξ2

The Euler-Lagrange equation: (boundary condition case)

THEOREM 4.2. Let Ω ∈ Rn be a bounded open set with piece-wise smooth boundary ∂Ω.

Consider the variational problem: minimize I(u) =

∫
Ω

F (~x, u(~x),∇u(~x)) d~x, with u = u0 on

∂Ω.

1. If u is an optimal solution, then u is also a solution to (E-L):

div
(
F~ξ(~x, u(~x),∇u(~x))

)
= Fλ(~x, u(~x),∇u(~x)) in Ω

u = u0 on ∂Ω.

2. (Converse in the convex case.) Suppose that for each fixed ~x ∈ Ω, F is a convex function
of λ and ~ξ. If u satisfies (E-L), then u is an optimal solution to the variational problem.

3. (Converse in the strictly convex case.) Suppose that for each fixed ~x ∈ Ω, F is a strictly
convex function of λ and ~ξ. If u satisfies (E-L), then u is the unique optimal solution to
the variational problem.

Before proving Theorem 4.2, we explain the equation (E-L): div
(
F~ξ(~x, u(~x),∇u(~x)))

)
means

first take the gradient of F (~x, λ, ~ξ) with respect to ~ξ and then evaluate at λ = u(~x), ~ξ = ∇u(~x)
– the result is a vector-valued function of ~x. Now take the divergence of this, with respect to ~x.

For example, suppose ~x = [x, y]T , u(~x) = x2 + y2 and F (~x, λ, ~ξ) = λxξ2
1 − ξ3

2 . Then∇u(~x) =
[2x, 2y]T and

F~ξ(~x, λ,
~ξ) =

[
2λxξ1,−3ξ2

2

]T
;

F~ξ(~x, u(~x),∇u(~x)) =
[
2(x2 + y2)x(2x),−3(2y)2

]T
;

div
(
F~ξ(~x, u(~x),∇u(~x)))

)
=
(
8x(2x2 + y2)

)
+ (−24y)

106 CHAPTER 4. VARIATIONAL PROBLEMS

The right hand side of (E-L) in this example is simply

Fλ(~x, λ, ~ξ) = xξ2
1

Fλ(~x, u(~x),∇u(~x)) = x(2x)2.

In the one-dimensional case, (E-L) is simply a second order ODE in the variable x, with bound-
ary conditions:

d

dx

(
Fξ(x, u(x), u′(x)

)
= Fλ(x, u(x), u′(x)) x ∈ (a, b)

u(a) = A, u(b) = B.

Since (E-L) is a necessary condition, if an optimal solution exists, it must be among the solutions
to this ODE.

There is a slightly stronger statement of the Euler-Legrange theorem, which we won’t prove
here. It states that, provided there is a unique solution to (E-L), then convexity in just the ~ξ
variable is sufficient to conclude the solution is optimal.

THEOREM 4.3. If u is the unique solution to (E-L) and F is convex with respect to the variable
~ξ for each fixed ~x ∈ Ω and λ ∈ R, then u is an optimal solution of the variational problem.

Proof of Theorem 4.2: one-dimensional case. Suppose that u(x) minimizes I(u) among all func-
tions satisfying u(a) = A, u(b) = B. If ϕ(x) is any differentiable function ϕ : (a, b)→ R with
ϕ(a) = ϕ(b) = 0, then for −ε < t < ε, vt(x) = u(x) + tϕ(x) is again an admissible function
(certainly vt(a) = u(a) = A, vt(b) = u(b) = B and vt is differentiable in x ∈ (a, b)). See
Figure 4.1. We call vt(x) a variation of u(x) = v0(x). Since u is optimal for I , we must have

a b

j HxL

uHxL

uHxL+j HxL uHxL+0.5j HxL

Figure 4.1: A variation of u(x).

I(u) = I(v0) ≤ I(vt) for all t.

Now define the function of one variable

g(t) = I(vt) =

∫ b

a

F (x, u(x) + tϕ(x), u′(x) + tϕ′(x)) dx.

4.2. FORMULATION AND THE EULER-LAGRANGE EQUATION 107

The statement that u = v0 is minimal means that g′(0) must equal zero. So we differentiate (the
requirements of differentiability on F justify moving any derivatives in and out of the integral):

0 =
d

dt

∣∣∣
t=0
I(vt) =

∫ b

a

(
Fλ(x, u(x), u′(x))ϕ(x) + Fξ(x, u(x), u′(x))ϕ′(x)

)
dx.

We integrate by parts, in the second term only, to move the derivative off ϕ and onto Fξ, making
use of the fact that the boundary terms involve ϕ(a) = ϕ(b) = 0. We obtain

0 =

∫ b

a

(
Fλ(x, u(x), u′(x))− d

dx
Fξ(x, u(x), u′(x))

)
ϕ(x) dx. (4.8)

Now since this must hold for every ϕ (with ϕ(a) = ϕ(b) = 0), this implies the (E-L) equation,
by Lemma 4.4 below. This proves part 1.

LEMMA 4.4. If f : (a, b) → R is continuous and
∫ b

a

f(x)ϕ(x) dx = 0 for all differentiable ϕ

with ϕ(a) = ϕ(b) = 0, then f(x) = 0 for all x ∈ (a, b).

Proof of Lemma 4.4. Recall the definition of continuity at x0: given any ε > 0 there exists
δ > 0 such that |f(x)− f(x0)| < ε for all |x− x0| < δ. Suppose now that there exists x0 such

that f(x0) 6= 0; without loss of generality, suppose that f(x0) > 0. Let ε =
1

2
f(x0) and let

δ > 0 be that guaranteed by the continuity of f at x0. See Figure 4.2. Thus, on (x0− δ, x0 + δ),

|f(x) − f(x0)| < ε =
1

2
f(x0), which implies f(x) > f(x0) − 1

2
f(x0) =

1

2
f(x0). Let ϕ be

a differentiable function which is 0 outside the interval (x0 − δ, x0 + δ), and is strictly greater
than zero inside the interval, say ϕ(x0) = 1. See Figure 4.2.

H L H L
x0-d x0+dx0

f Hx0L

x0-d x0+dx0

1

j HxL

Figure 4.2: If f(x0) > 0 then f(x) > 0 near x0.

Now, with this ϕ,

0 =

∫ b

a

f(x)ϕ(x) dx =

∫ x0+δ

x0−δ
f(x)ϕ(x) dx ≥ f(x0)

2

∫ x0+δ

x0−δ
ϕ(x) dx > 0

which is clearly a contradiction. Thus, no such x0 can exist and f(x) = 0 for all x.

108 CHAPTER 4. VARIATIONAL PROBLEMS

We continue with the proof of Theorem 4.2, parts 2 and 3. Suppose now that F is convex as a
function of λ and ξ for each fixed x ∈ (a, b), and suppose that u satisfies (E-L). Convexity gives
(see (2.18) in Chapter 2)

F (x, λ̃, ξ̃) ≥ F (x, λ, ξ) + Fλ,ξ(x, λ, ξ)
(
(λ̃, ξ̃)− (λ, ξ)

)
so for any admissible v,

F (x, v(x), v′(x)) ≥ F (x, u(x), u′(x)) + Fλ(x, u(x), u′(x))(v(x)− u(x))

+ Fξ(x, u(x), u′(x))(v′(x)− u′(x)).

Thus

I(v)− I(u) =

∫ b

a

(
F (x, v(x), v′(x))− F (x, u(x), u′(x))

)
dx

≥
∫ b

a

(
Fλ(x, u(x), u′(x))(v(x)− u(x)) + Fξ(x, u(x), u′(x))(v′(x)− u′(x))

)
dx

Integrating the second term by parts, as above, we obtain the (E-L) equation for u (times (v(x)−
u(x))), giving 0. Thus I(v) ≥ I(u) and u is an optimal solution.

For strict convexity, we can simply replace the ≥ by > in the above argument.

Proof of Theorem 4.2: general case. The proof proceeds in the same manner as for the one-
dimensional case. We consider any function ϕ : Ω ⊂ Rn → R where we now require ϕ = 0 on
all of ∂Ω. The variation vt(~x) = u(~x) + tϕ(~x) is as before, and we again define a function of
one variable

g(t) = I(vt) =

∫
Ω

F (~x, u(~x) + tϕ(~x),∇u(~x) + t∇ϕ(~x)) d~x;

since u = v0 is minimal, g′(0) = 0, and so

0 =
d

dt

∣∣∣
t=0
I(vt) =

∫ b

a

(
Fλ(~x, u(~x),∇u(~x))ϕ(~x) +∇~ξF (~x, u(~x),∇u(~x)) · ∇ϕ(~x)

)
d~x. (4.9)

Applying the Divergence Theorem (B.7.10) to the vector field ϕ(~x)∇~ξF (~x, u(~x),∇u(~x)) (see
Exercise 4.5), ∫

Ω

∇~ξF · ∇ϕ d~x = −
∫

Ω

ϕ div(∇~ξF) d~x+

∫
∂Ω

ϕ∇~ξF · d ~A.

Using the fact that ϕ = 0 on ∂Ω and inserting the result into (4.9) we obtain

0 =

∫
Ω

(
Fλ(~x, u(~x),∇u(~x))− div(F~ξ(~x, u(~x),∇u(~x))

)
ϕ(~x) d~x.

By Exercise 4.6, this implies (E-L).

4.2. FORMULATION AND THE EULER-LAGRANGE EQUATION 109

EXERCISE 4.5. If ϕ is a scalar valued function, and ~G is a vector field, apply the Divergence
Theorem (B.7.10) to the vector field ϕ~G to prove∫

Ω

(
~G · ∇ϕ+ ϕ(div ~G)

)
dV =

∫
∂Ω

ϕ~G · d ~A.

EXERCISE 4.6. Mimicking the proof of Lemma 4.4, prove:

If F : Ω ⊂ Rn → R is continuous, and∫
Ω

F (~x)ϕ(~x) d~x = 0

for all continuous ϕ : Ω→ R with ϕ = 0 on ∂Ω, then F (~x) = 0 for all ~x ∈ Ω.

From this point on, unless stated otherwise, we will deal only with one-dimensional problems,
F : (a, b) × R × R → R. In many applications, the Lagrangian is independent of some of the
variables (we will see this case by case).

Special Case I: When F (x, λ, ξ) = F (ξ) only (is independent of x and λ), (E-L) becomes
d

dx

(
Fξ(u

′(x))
)

= 0. If we expand this derivative

Fξξ(u
′(x))u′′(x) = 0 (4.10)

From this we obtain: if u(x) is an optimal solution, either,

1. there exists x0 such that Fξξ(u′(x0)) 6= 0: in this case (Exercise 4.7) it can be shown that
u′′(x) = 0 for all x ∈ (a, b). Then u(x) is a linear function,

u = αx+ β,

and satisfying the boundary conditions, u is simply the equation of the straight line pass-
ing through (a,A) and (b, B). Or,

2. Fξξ is identically zero on the interval J with endpoints min(a,b) u
′(x) and max(a,b) u

′(x).
In this case F (ξ) = αξ + β, and then

I(u) =

∫ b

a

(αu′(x) + β) dx = α(B − A) + β(b− a).

But any admissible u gives this result, and so the functional I is actually constant over all
admissible functions.

EXERCISE 4.7. Let u ∈ C2(a, b) and suppose that there exists x0 such that Fξξ(u′(x0)) 6= 0.
Prove that (4.10) implies that u′′(x) = 0 for all x ∈ (a, b). (Hint: first argue that there is an
interval (a0, b0) ⊂ (a, b) containing x0 on which Fξξ(u′(x)) 6= 0, and take it to be the largest
such interval, so either F (u′(a0)) = 0 or a0 = a. Now prove that F (u′(a0)) = F (u′(x0)), so
that a0 = a. Complete the argument to prove the result.)

110 CHAPTER 4. VARIATIONAL PROBLEMS

Special Case II: Beltrami’s identity. Suppose that F (x, λ, ξ) = F (λ, ξ) is independent of x.
We compute the derivative of F (x, u(x), u′(x)) with respect to x:

dF

dx
=
∂F

∂x
+
∂F

∂λ
u′ +

∂F

∂ξ
u′′ =

∂F

∂λ
u′ +

∂F

∂ξ
u′′

when F (x, λ, ξ) = F (λ, ξ). The Euler-Lagrange equation says

d

dx

(∂F
∂ξ

)
=
∂F

∂λ
⇒ u′

d

dx

(∂F
∂ξ

)
= u′

∂F

∂λ
=
dF

dx
− ∂F

∂ξ
u′′

from the above. We rearrange this and notice that (by the product rule) we have the following:

0 =
dF

dx
− u′ d

dx

(∂F
∂ξ

)
− u′′∂F

∂ξ
=

d

dx

(
F − u′∂F

∂ξ

)
.

Thus (this is Beltrami’s identity)

F − u′∂F
∂ξ

= C = constant. (4.11)

REMARK. What we have shown is that if u is a solution to (E-L), then it is also a solution
to Beltrami’s Identity. The converse is not necessarily true. One might find solutions to (4.11)
which do not solve (E-L). However, among all solutions to (4.11) must be the solutions to (E-L).

4.3 Examples

Geodesic on a cylinder

See (4.2), page 102. The path of minimal length joining P = (1, 0, 0) to Q = (1, θ0, z0) (in
cylindrical coordinates) can be parameterized as

σ(θ) = (cos θ, sin θ, z(θ)), 0 < θ < θ0.

So, we seek z(θ) satisfying (4.2). The Lagrangian is F (ξ) =
√

1 + ξ2, which is independent of
θ and λ. Since F ′′(ξ) = 1/(1 + ξ2)3/2 > 0, if we find a solution to (E-L) then it has to be the
unique minimizer. According to what we computed earlier for F = F (ξ) only, z(θ) = αθ + β

and the boundary conditions imply z(θ) =
z0

θ0

θ.

Solution to the Brachistochrone Problem

See (4.4), page 103. The time-minimizing path is given by y(x) satisfying (4.4). The problem
is completely scalable, and so we will assume here that Y = 1; the bead starts at (0, 1). The

4.3. EXAMPLES 111

Lagrangian is

F (x, λ, ξ) =

√
1 + ξ2

1− λ

which, we see, depends only on λ and ξ. Thus we may use Beltrami’s identity, (4.11). Applying
this to our problem,

C = F − y′∂F
∂ξ

(x, y, y′) =

√
1 + (y′)2

√
1− y

− y′ y′√
(1− y)(1 + (y′)2)

=
1√

(1− y)(1 + (y′)2)

so, with a new constant C,

(1 + (y′)2)(1− y) = C ⇒ dy

dx
= ±

√
C − (1− y)

1− y
= ±

√
C

1− y
− 1. (4.12)

(Notice that since the bead is dropping down from y = 1, C > 0.) This equation is separable:

±
√

1− y
C − 1 + y

dy = dx.

The left hand side encourages the use of a trigonometric substitution; we set 1−y = C sin2(ϕ/2).
(The choice of ϕ/2 is unnecessary, but results in a simpler expression for the solution.) Com-

puting
dy

dϕ
= −C sin(ϕ/2) cos(ϕ/2), we obtain

±

√
C sin2(ϕ/2)

C(1− sin2(ϕ/2))
C sin(ϕ/2) cos(ϕ/2) dϕ = dx

which simplifies to

dx

dϕ
= ±C sin2(ϕ/2) = ±C

2
(1− cos(ϕ)) ⇒ x = ±C

2
(ϕ− sinϕ) + C̃.

Now x(0) = C̃ = 0, and since x(ϕ) must be an increasing function (for the bead to move to the
right) x′(ϕ) must be positive (although x′(0) = 0); thus we see that we should take the positive
sign. We obtain

x(ϕ) =
C

2
(ϕ− sinϕ), y(ϕ) =

C

2
(cosϕ− 1) + 1. (4.13)

These are the parametric equations of a cycloid – the result of rolling a wheel of radius C
“upside down” along the bottom side of the line y = 1; the center of the wheel is always along
y = 1−C/2, and the wheel rolls counter-clockwise. The path (x(ϕ), y(ϕ)) is that traced out by
the point on the rim of the wheel starting at (0, 1). We depict this in Figures 4.4–4.7 below. First,

112 CHAPTER 4. VARIATIONAL PROBLEMS

however, we must solve for the two degrees of freedom in these equations: we must determine
a C and a final value ϕ0 of ϕ such that x(ϕ0) = X and y(ϕ0) = 0.

Understanding the solution: First, notice that x′(ϕ) = 0 and y′(0) < 0, so the optimal strategy
is always to start falling straight down, which makes sense. To obtain the path which meets
(X, 0) we need to find the right C, but also the right final ϕ value. We have

y = 0 ⇒ cosϕ = 1− 2

C
;

since−1 ≤ cosϕ ≤ 1, we find that C ≥ 1. We can solve for ϕ = arccos(1−2/C), but this only
gives us one of the solutions (from the definition of arccos); the other is 2π− arccos(1− 2/C).
Plugging these into x, and simplifying, we find

X =
C

2
arccos

(
1− 2

C

)
−
√
C − 1 = f1(C), and

X =
C

2

(
2π − arccos

(
1− 2

C

))
+
√
C − 1 = f2(C).

One finds

• f1(1) =
π

2
, and f1(C) → 0 as C → ∞, with f ′1(C) < 0. Thus 0 < f1(C) ≤ π/2 and so

if 0 < X ≤ π

2
, C is determined by solving X = f1(C).

• On the other hand, f2(1) =
π

2
, f2(C)→∞ as C →∞, and f ′2(C) > 0. Thus if X >

π

2
,

C is determined by solving X = f2(C).

Figure 4.3 shows these functions.

f1HCL

f2HCL

p ê2

1 2 3 4
C

2

4

6

8

10

12

X

Figure 4.3: Determination of C given X .

In order to find specific solutions, it is necessary to find C given X , which we do numeri-
cally with Mathematica. The function we use is FindRoot[equation, {var, init}],

4.3. EXAMPLES 113

where equation is that which you are trying to solve, var is the variable to solve for, and
init is the initial guess from where to search. What should be taken as an initial guess is
usually best determined on a case by case basis. In this application, it turns out using C = 2 is
successful for all X.

One remark: Mathematica reserves the symbol C for the list of undetermined coefficients in
solving equations, so we must use another symbol; here we use c. This code returns both the C
and the corresponding maximal ϕ0 in the parameterization for (x(ϕ), y(ϕ)), 0 ≤ ϕ ≤ ϕ0.

f[X] := Module[{c, φ},
If[0 < X <= π/2,

(* use f1 *)
c = c/.FindRoot[c/2(ArcCos[1-2/c]-2Sqrt[1/c-1/c∧2])

== X, {c, 2}];
φ = ArcCos[1-2/c],
(* use f2 *)
c = c/.FindRoot[c/2(2π-ArcCos[1-2/c]+2Sqrt[1/c-1/c∧2])

== X, {c, 2}];
φ = 2π - ArcCos[1-2/c]
];

Chop[{c, φ}]
]

The command FindRoot[] produces a (potentially empty) list of replacement rules,

{{c -> sol1}, {c -> sol2}, ...}

where sol1, soln2 are the set of roots found. In the present example, there is only one pos-
sible root, so we don’t need to worry about using the correct root. The use of c/.FindRoot[]
causes the replacement to happen and c takes on the solution found. Since roots are being found
numerically, computational errors can lead to very small complex parts (of the order of 10−18).
The Chop[] command throws away such small components.

Minimal surface of revolution:

The surface of revolution about the x-axis, a ≤ x ≤ b, with radius A at a and radius B
at b is formed by the generating function u(x) which solves (4.5). The Lagrangian is thus

114 CHAPTER 4. VARIATIONAL PROBLEMS

p

4

Figure 4.4: Brachistochrone solution: X =
π

4
, Y = 1.

p

2

Figure 4.5: Brachistochrone solution: X =
π

2
, Y = 1.

F (λ, ξ) = λ
√

1 + ξ2. This function is not jointly convex in λ and ξ for

D2F (λ, ξ) =

0

ξ√
1 + ξ2

ξ√
1 + ξ2

λ

(1 + ξ2)3/2

which has determinant −(y′)2/(1 + (y′)2) ≤ 0. However, for fixed λ > 0, it is strictly convex
in ξ. (We may assume that u > 0 in order to actually have a surface.) Thus, if we find there is
uniqueness of solution in (E-L) we can apply Theorem 4.3 to conclude the solution is optimal.

We again make use of Beltrami’s identity (4.11) to obtain

u
√

1 + (u′)2 − u′ uu′√
1 + (u′)2

= C.

If C = 0 then we find u = 0 which we will not allow. Provided u2 6= C2, the above can be

4.3. EXAMPLES 115

p

Figure 4.6: Brachistochrone solution: X = π, Y = 1.

2 p

Figure 4.7: Brachistochrone solution: X = 2π, Y = 1.

re-written u2 − C2 = C2(u′)2, and then,

u′√
u2 − C2

= ± 1

C
⇒ du√

u2 − C2
= ±dx

C
. (4.14)

Since cosh2 θ−1 = sinh2 θ, we are motivated to substitute u = C cosh θ; then du = C sinh θdθ,
and we get dθ = ±dx/C, and so

θ = ± x
C

+ d ⇒ arccosh
u

C
= ± x

C
+ d ⇒ u = C cosh

(
± x
C

+ d
)
.

Note that we may take the positive sign (say) since cosh is an even function; taking the negative
sign will simply result in d being replaced by −d, another constant to be determined anyway.

If, in fact, u2 = C2, then u = C is constant. This is an example of a where there is a solution
to Beltrami’s identity which is not a solution to (E-L). To see this, we must compute (E-L) for
this Lagrangian:

0 =
d

dx

(
Fξ(x, u, u

′)
)
− Fλ(x, u, u′) =

u(x)u′′(x)− u′(x)4 − 2u′(x)− 1

(1 + u′(x)2)3/2

and it is evident that u(x) = C, constant, does not satisfy this.

116 CHAPTER 4. VARIATIONAL PROBLEMS

REMARK. There is another, useful and clever, way to approach the solution to the non-linear
ordinary differential equation u2−C2 = C2(u′)2 we solved above. We demonstrate it here, even
though we have successfully solved the equation above. Starting with C2(u′)2−u2 = −C2, we
differentiate once more to obtain

2C2u′u′′ − 2uu′ = 0 ⇒ u′ = 0, or C2u′′ − u = 0.

If u′ = 0 then u(x) = c is constant, which we discussed above. To solve C2u′′ − u = 0, we
can consider the auxiliary polynomial C2r2 − 1, which has roots r = ±1/C, and the general
solution is (see Appendix A)

u(x) = c1e
x/C + c2e

−x/C

This can be manipulated algebraically to look like the cosh solution above, but it takes some
work. This alternative approach isn’t advantageous in this case because by differentiating once
more, we are introducing yet another unknown constant (notice that there are three constants
c1, c2, and C now) and it takes extra work to determine these. We will see, later, that sometimes
this approach is advantageous – what makes it so is when the constant C disappears from the
equation. See Example 4.9 below. �

Now for the boundary conditions. We need u(a) = A and u(b) = B. Without loss of generality,
we can fix one of these to be a = 0, A = 1. Thus we must have

C cosh d = 1,
B

C
= cosh

(b
C

+ d
)
. (4.15)

Thinking of these as functions of C and d, we need the level-0 sets of C cosh d − 1 and
cosh(b/C + d)−B/C to have intersection.

Before investigating when such intersection can occur, it is worth thinking physically: the ring
at a = 0 has radius 1; the ring at b has radius B. If b is very large, it is clear that the surface of
smallest area which has these circles as boundary is actually a disconnected surface comprised
of two disks, with area π(1+B2); indeed, it can be thought of as the limit of a connected surface
which has a very thin tube joining the two disks together. See Figure 4.8. When b is small, it
is believable that we can form a surface joining the rings with area less than π(1 + B2). By
continuity, there must be some value of b for which these two possibilities have the same area.

Equation (4.15) cannot be solved analytically. It is also more complicated that it might appear.
To begin with, let’s consider the case when the two rings are of the same size, say A = B = 1,
and are situated at a = −α, b = α (this enables easier use of symmetry). Instead of (4.15), we
then have

u(−α) = 1 = C cosh
(−α
C

+ d
)

= C cosh
(α
C

+ d
)

= u(α). (4.16)

With C 6= 0, taking cosh−1 we obtain

α

C
+ d = ±

(−α
C

+ d
)

⇒ either
α

C
= 0, or d = 0. (4.17)

4.3. EXAMPLES 117

Figure 4.8: Approaching a minimal surface when the boundary rings are far apart.

The first is not relevant (the rings are both at x = 0), so d = 0 and

u(x) = C cosh
x

C
. (4.18)

Of course we still need u(α) = 1 = C cosh
α

C
. Figure 4.9 shows a plot of this equation’s

solution set.

-0.6 -0.4 -0.2 0.2 0.4 0.6
Α

0.2

0.4

0.6

0.8

1.0

C

Figure 4.9: The solution set to C cosh
α

C
= 1.

The maximum value of α for which there exists a solution C is (approximately) α ≈ 0.6627,
with C ≈ 0.5524. If α . 0.6627 we see that there are two solutions to (E-L) of the form (4.18).
There is also the limiting solution, not found by (E-L), consisting of the two disjoint disks.
Which is optimal, for a given separation constant α, is not immediately clear. For each α we
can compute the corresponding surface areas of the various possible solutions:

1. The two-disk (non)-solution has surface area 2π;

118 CHAPTER 4. VARIATIONAL PROBLEMS

2. When α . 0.6627 there are C1 and C2, giving solutions uj(x) = Cj cosh
x

Cj
from which

we compute the surface areas∫ α

−α
2πuj(x)

√
1 + (u′j(x))2 dx.

When there are two Cj we obtain surfaces of revolution, one of which is “close to” a cylinder,
the other of which is “pinched”. For example, when α = 0.5, the two surfaces are shown in
Figure 4.10. Which has smaller surface area? The surface areas of all potential solutions are
plotted in Figure 4.11.

Figure 4.10: The two surfaces of revolution corresponding to the two solutions to (E-L) when
α = 0.5.

Conclusion: Despite the multiple possibilities, we see that the optimal solution is:

1. when α . 0.5277, the approximate cylinder whose generating function is given by (4.18)
with C being the larger of the two solutions found from Figure 4.9;

2. when α & 0.5277, the disconnected surface consisting of two disks;

3. when α ≈ 0.5277, the approximate cylinder ((4.18) with C ≈ 0.8255) and the two-disk
solution are both optimal, with the same surface area.

The “pinched” solutions are, of course, places where the functional I(u) has zero derivative,
I ′(u) = 0. Without further analysis, we can’t be sure whether this is a local minimum, a local
maximum, or neither. Figure 4.12 shows the optimal approximate cylinder and the two-disk
solution for α ≈ 0.5277, when the surface areas are equal.

4.4. NATURAL BOUNDARY CONDITIONS 119

pinched

two disks

approx. cylinder

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Α

1

2

3

4

5

6

7

Surface Area

Figure 4.11: Surface areas of (potential) solutions to the minimal surface of revolution problem.

The more general case requires seeing whether or not (4.15) has solutions C and d, and in
general when it does, there will be two solutions, and so one must test to see which is minimal.
These still need to be tested against the two disk solution for it may turn out to be smaller still.

In the case that b is too large for there to be solutions to (E-L), our formulation of the problem
cannot find the optimal two-disk solution. We can approximate the optimal solution as closely
as we wish by taking a very narrow tube joining two “almost-disks,” but (E-L) will not find
these functions since they are not ever optimal.

4.4 Natural Boundary Conditions

We consider now the case where there is only one fixed boundary condition; the other end is
“free.” Consider minimizing

I(u) =

∫ b

a

F (x, u(x), u′(x)) dx, u(a) = A.

Since we have an extra degree of freedom, it’s likely that (E-L) plus u(a) = A are not enough
conditions to pin the optimal solution down. This is indeed the case as we now see.

In the derivation of the (E-L) equation, we used the boundary conditions at the step of inte-
gration by parts – we “varied” the optimal solution u(x) by a function ϕ(x) which was zero at
x = a and x = b. Now we have no reason to impose ϕ(b) = 0 and we obtain

0 =

∫ b

a

(
Fλ(x, u(x), u′(x))− d

dx
Fξ(x, u(x), u′(x))

)
ϕ(x) dx

+ Fξ(b, u(b), u′(b))ϕ(b). (4.19)

120 CHAPTER 4. VARIATIONAL PROBLEMS

Figure 4.12: The optimal approximate cylinder and the two-disk solution when α ≈ 0.5277.
The surface areas of the two solutions are equal.

This must hold for all differentiable ϕ with ϕ(a) = 0. Among all such allowable ϕ are the ones
which do have ϕ(b) = 0, that is it must also be true that

0 =

∫ b

a

(
Fλ(x, u(x), u′(x))− d

dx
Fξ(x, u(x), u′(x))

)
ϕ(x) dx (4.20)

for all ϕ which are zero at both x = a and x = b. But just as in the proof of (E-L), (4.20)
implies that the original (E-L) equation still holds. Knowing this, we return to (4.19) but with

Fλ(x, u(x), u′(x))− d

dx
Fξ(x, u(x), u′(x)) = 0. Thus Fξ(b, u(b), u′(b))ϕ(b) = 0; since ϕ(b) is

arbitrary, we obtain the extra condition which must be satisfied

Fξ(b, u(b), u′(b)) = 0.

This is the “natural” boundary condition at b. The same could be applied to the endpoint x = a.

EXAMPLE 4.8. Consider a variation on the Brachistochrone problem: starting at (0, Y), what
is the path a frictionless bead should follow, influenced only by gravity, so as to reach x = X
in the shortest amount of time? There is no restriction on what y should equal at x = X .

Again, we will take Y = 1. The set-up of the problem is just as in 4.3, but we now have the
new natural boundary condition Fξ(X, y(X), y′(X)) = 0. That is, at x = X ,

y′√
2g(1− y)(1 + (y′)2)

= 0 ⇒ y′(X) = 0.

This means the bead reaches X traveling horizontally. By (4.12), at x = X , we have

dy

dx
= −

√
C

1− y
− 1 = 0 ⇒ y(X) = 1− C.

4.4. NATURAL BOUNDARY CONDITIONS 121

This time, we can find the unknown constants, namely C and the final value ϕ0 of ϕ, more
easily. At ϕ = ϕ0 it must hold that y′(ϕ0) = 0. By (4.13), we have

0 = y′(ϕ0) = −C
2

sinϕ0 ⇒ ϕ0 = π,

and then

X = x(ϕ0) = x(π) =
C

2
(π − sin π) =

C

2
π ⇒ C =

2X

π
.

Thus, x(ϕ) =
X

π
(ϕ− sinϕ) and y(ϕ) =

X

π
(cosϕ− 1) + 1. �

There is no reason why both boundary conditions couldn’t be free as in the following example.
In this case we would obtain the natural boundary conditions on the Euler-Lagrange equation:

Fξ(a, u(a), u′(a)) = 0, Fξ(b, u(b), u′(b)) = 0.

EXAMPLE 4.9. Find the function u which minimizes

I(u) =
1

2

∫ log 2

0

(
(u′(x)− 1)2 + u(x)2

)
dx.

Intuitively, we are looking for a function which is of slope as close to 1 as possible, while
simultaneously having value as close to zero as possible. Both boundary conditions are free.
We have F (x, λ, ξ) = (ξ − 1)2 + λ2 and we must solve

F (x, u, u′)− u′Fξ(x, u, u′) = C, i.e. (u′ − 1)2 + u2 − u′2(u′ − 1) = C

or, 1− (u′)2 + u2 = C.

This time it is advantageous to differentiate the equation once more. The reason is that the
constant C will vanish; the resulting equation is second order and so still has two degrees
of freedom, as necessary. Differentiating, we obtain 2u′u′′ − 2uu′ = 0 so, either u = c or
u′′ − u = 0. Consider the latter. The auxiliary polynomial r2 − 1 = 0 has roots at r = ±1 so
the general solution is (see Appendix A)

u(x) = Aex +Be−x.

The natural boundary conditions are

Fξ(0, u(0), u′(0)) = 2(u′(0)− 1) = 0, and
Fξ(log 2, u(log 2), u′(log 2)) = 2(u′(log 2)− 1) = 0.

That is

1 = u′(0) = A−B, and 1 = u′(log 2) = 2A− B

2

122 CHAPTER 4. VARIATIONAL PROBLEMS

so

u(x) =
1

3
ex − 2

3
e−x.

If u(x) = c then we are unable to satisfy the natural boundary conditions. A plot of this optimal

solution shows it to be barely distinguishable from the straight line with slope 1, y = x−1

2
log 2.

However,

I
(1

3
ex − 2

3
e−x
)
≈ 0.2648, while I

(
x− 1

2
log 2

)
≈ 0.2775.

�

EXERCISE 4.10. Re-solve the above example by solving

1− (u′)2 + u2 = C ⇒ 1√
1− C + u2

du = dx.

(Hint: make the substitution u =
√

1− C sinhϕ for the left hand side.)

One can also consider inequalities for the boundary conditions (e.g. B1 ≤ u(b) ≤ B2), and
in practice such restrictions may be very important. These are treated simply by considering
the boundary condition as free; we solve the problem and then look at the (potentially) optimal
solution at b, u(b). If indeed B1 ≤ u(b) ≤ B2 then this is our optimal solution; if not, however,
the optimal solution must have either u(b) = B1 or u(b) = B2. One option now would be
to solve the two variational problems with these fixed boundary conditions and simply check
which was optimal.

4.5 Variational problems with integral constraints

Note: As in the last paragraph of the previous section, one can consider both equality and
inequality constraints, but we will restrict our attention to equality constraints.

Now we consider variational problems which, in addition to having boundary conditions (one
or both of which may be free) we have integral constraints: the optimal solution u must satisfy

J(u) :=

∫ b

a

~H(x, u(x), u′(x)) dx = ~β. (4.21)

Here, the functions comprising ~H are given, and ~β is given; it is u we are looking for.

A good example of an integral constraint will be seen when we look for the shape taken by a
hanging cable strung between two points. The constraint is the length of the cable, which is, of
course, given by an integral.

4.5. VARIATIONAL PROBLEMS WITH INTEGRAL CONSTRAINTS 123

REMARK. Including fixed endpoints as integral constraints: sometimes it can be convenient to
replace u(a) = A, u(b) = B by

u(a) = A, and
∫ b

a

u′(x) dx = B − A

so that the second condition can be incorporated with the other integral constraint(s). In practice,
re-writing the constraint this way can make no difference to the solutions. It might be helpful
from a book-keeping point of view.

Boundary value constraints are constraints on the value(s) of the feasible function; integral con-
straints, on the other hand, are constraints on the feasible functions themselves. This situation
is therefore more like the case of constrained optimization over Rn, but this time over a vector
space of functions. We approach the problem from the point of view of Lagrange’s theorem.
The proof of Lagrange’s theorem is very much dependent on the finite-dimensionality of Rn,
and the inner product (the dot-product) of Rn. To extend this to a proof in an infinite dimen-
sional vector space of functions, we have to work with what is called the L2 inner product which
goes beyond the prerequisites of this material.

The idea, however, is the following. We consider the case where the boundary conditions are
fixed, u(a) = A and u(b) = B. Let u be an optimal function for I(u) subject to the integral
constraint (4.21). Let ϕ ∈ C1([a, b]) be such that ϕ(a) = ϕ(b) = 0 and consider the admissible
variation vt = u + tϕ. Once again (E-L) must hold since u is optimal. But further, to be
admissible, it must also hold that J(vt) = β for all sufficiently small t. Differentiating this with
respect to t and integrating by parts (just as in the proof of the Euler-Lagrange theorem), and
combining with (E-L) for u, we obtain∫ b

a

(
Fλ(x, u, u

′)− d

dx
Fξ(x, u, u

′)
)
ϕ dx = 0

for all ϕ such that ∫ b

a

(
Hλ(x, u, u

′)− d

dx
Hξ(x, u, u

′)
)
ϕ dx = 0

(plus, of course, ϕ(a) = ϕ(b) = 0). What this means, though we don’t prove it here, is that the
first integrand must be a multiple of the second,

Fλ(x, u, u
′)− d

dx
Fξ(x, u, u

′) + z
(
Hλ(x, u, u

′)− d

dx
Hξ(x, u, u

′)
)

= 0

for some scalar multiplier z.

We can pose his condition more succinctly by defining the augmented Lagrangian. Returning
to possibly more than one integral constraint, we define

F̃ (x, λ, ξ) := F (x, λ, ξ) + ~z T ~H(x, λ, ξ).

124 CHAPTER 4. VARIATIONAL PROBLEMS

THEOREM 4.11. Consider the optimization problem: minimize

I(u) =

∫ b

a

F (x, u(x), u′(x)) dx (4.22)

subject to u(a) = A, u(b) = B and
∫ b

a

~H(x, u(x), u′(x)) dx = ~β. (4.23)

Suppose there exists a vector ~z of multipliers such that the augmented Lagrangian F̃ = F +
~z T ~H is convex as a function of ξ for each fixed x ∈ (a, b), λ ∈ R. If u is the unique solution to
the (E-L) equation for F̃ :

d

dx

[
F̃ξ(x, u(x), u′(x))

]
= F̃λ(x, u(x), u′(x))

and u satisfies (4.23), then u is an optimal solution of the problem (4.22, 4.23).

We should remark that the process of solving such a problem differs somewhat from the case
where there are no integral constraints, and hence no vector of multipliers. When we solve the
(E-L) equation for F̃ , we will have parameters z1, . . . , zk floating around which are not (yet)
determined; the potentially optimal solution u will be given in terms of these parameters. To
determine what these zj actually are, we then impose the conditions∫ b

a

~H(x, u(x), u′(x)) dx = ~β

using the actual u we have found. We will see this by example.

EXAMPLE 4.12. Minimize I(u) =

∫ 1

0

(u′(x))2 dx under the restrictions u(0) = u(1) = 0,∫ 1

0

u(x) dx = 1. Geometrically, we seek the function whose graph goes through (0, 0) and

(1, 0), has minimal (absolute) slope, but has (potentially signed) area one.

The augmented Lagrangian is

F̃ (x, λ, ξ) = F (x, λ, ξ) + zλ = ξ2 + zλ.

Here, z is the undetermined multiplier. Since F̃ is independent of x, the (E-L) equation is now
(by Beltrami’s identity)

C = F̃ − u′F̃ξ = (u′)2 + zu− u′(2u′) = zu− (u′)2.

Differentiating once more we obtain

0 = u′(z − 2u′′) ⇒ u = c0, or u′′ =
z

2

⇒ u = c0, or u =
z

4
x2 + c1x+ c2.

4.5. VARIATIONAL PROBLEMS WITH INTEGRAL CONSTRAINTS 125

Since u(0) = 0, c0 = c2 = 0. Since u(1) = 0,
z

4
+ c1 = 0. Now we impose the integral

constraint (we quickly see that u = c0 is not a solution):

1 =

∫ 1

0

u(x) dx =

∫ 1

0

(z
4
x2 + c1x

)
dx =

z

12
+
c1

2
.

These imply z = −24 and c1 = 6. The optimal solution is thus u(x) = −6x2 + 6x. �

4.5.1 A Hanging Cable example.

The potential energy of a cable hung between (−D, 0) and (D, 0) is proportional to (see (4.6))

I(u) =

∫ D

−D
u(x)

√
1 + (u′(x))2 dx.

We require u(−D) = 0 and u(D) = 0; the last constraint is that its length be L:∫ D

−D

√
1 + (u′(x))2 dx = L.

Although it is not necessarily more efficient to do so, to illustrate the approach we absorb one

boundary condition as an integral constraint: instead of u(D) = 0, we require
∫ D

−D
u′(x) dx = 0.

Consider, then, the augmented Lagrangian F̃ (x, λ, ξ) = λ
√

1 + ξ2 + z1ξ + z2

√
1 + ξ2. The

(E-L) equation gives, via the Beltrami identity,

C = F̃ − u′F̃ξ

= u
√

1 + (u′)2 + z1u
′ + z2

√
1 + (u′)2 − u′

(uu′√
1 + (u′)2

+ z1 +
z2u
′√

1 + (u′)2

)
from which we obtain, provided (u+ z2)2 6= C2,

u+ z2 = C
√

1 + (u′)2 ⇒ u′ = ±
√

(u+ z2)2 − C2

C
⇒ du√

(u+ z2)2 − C2
= ±dx

C
.

This is the same equation we solved in seeking the minimal area surface of revolution (see
(4.14)) with u replaced by u+ z2. Its solution is thus

u+ z2 = C cosh
(
± x
C

+ d
)
, ⇒ u = C cosh

(x
C

+ d
)
− z2

where we can take the positive sign since cosh is an even function. Imposing u(−D) = 0 and

0 =

∫ D

−D
u′(x) dx = u(D)− u(−D) = u(D), we have

C cosh
(
−D
C

+ d
)

= C cosh
(D
C

+ d
)

126 CHAPTER 4. VARIATIONAL PROBLEMS

and, as in (4.16) and (4.17), we deduce d = 0. Next

u(−D) = 0 ⇒ z2 = C cosh
D

C
, so u = C

(
cosh

x

C
− cosh

D

C

)
.

Finally,

L =

∫ D

−D

√
1 + (u′)2 dx =

∫ D

−D

u+ z2

C
dx =

∫ D

−D
cosh

x

C
dx = 2C sinh

D

C
.

Thus, C is determined from L = 2C sinh
D

C
. Note that we must have L ≥ 2D for the problem

to make sense, and indeed this equation has no solution for C is L ≤ 2D. If L = 2D, the
solution is the constant solution u = 0. See Exercise 4.13.

EXERCISE 4.13. In solving the hanging cable problem above, we assumed that (u+z2)2 6= C2.
Show that if (u+ z2)2 = C2 then there is a solution only if L = 2D, and show that the solution
is u = 0.

4.6 Exercises

1. Find the solutions to

(a) minimize
∫ 1

0

(
u′(x)2 + 2u(x)2

)
ex dx subject to u(0) = 1, u(1) = 0, and

(b) minimize
∫ π

0

(
u′(x)2 − 1

2
u(x)2

)
ex dx subject to u(0) = 1, u(π) = 2.

2. Exercise 4.1, page 102.

3. Exercise 4.5, page 109.

4. Exercise 4.6, page 109.

5. Exercise 4.7, page 109.

6. Exercise 4.10, page 122.

7. Show that, assuming sufficient smoothness of all functions involved, if u is a minimizer
of the second order problem

minimize
∫ b

a

F (x, u(x), u′(x), u′′(x)) dx

subject to (u(a), u(b), u′(a), u′(b)) = (A,B,C,D)

then u satisfies the second order Euler-Lagrange equation

Fλ(x, u, u
′, u′′)− d

dx

(
Fξ(x, u, u

′, u′′)
)

+
d2

dx2

(
Fµ(x, u, u′, u′′)

)
= 0 (4.24)

where F : (a, b)× R× R× R→ R and we use the variables F (x, λ, ξ, µ).

4.6. EXERCISES 127

8. We wish to drive a rocket propelled car from u = 0 to u = 1 in time 1, minimizing the use
of fuel. The only way to slow the car down is to fire the rocket in the opposite direction,
so deceleration costs fuel in the same way as acceleration does. We require that the car
begins and ends with zero velocity.

(a) If we model fuel consumption as being due to acceleration and to velocity, solve the
optimization problem

minimize
∫ 1

0

(
(u′(t))2 + (u′′(t))2

)
dt

subject to u(0) = 0, u(1) = 1, u′(0) = u′(1) = 0.

You will need to use Exercise 7. Use Mathematica to Plot[] your solution.

(b) If we model fuel consumption as being due only to acceleration, solve the optimiza-
tion problem

minimize
∫ 1

0

(u′′(t))2 dt subject to u(0) = 0, u(1) = 1, u′(0) = u′(1) = 0.

Use Mathematica to Plot[] your solution and to compute
∫ 1

0

(u′′(t))2 dt. Show

that this is (slightly) smaller for this problem than for the u of the previous problem.

9. Consider the following variation on the Brachistochrone problem: Starting at x = 0, y =
1, what path should the bead follow so as to reach x = 3 in the shortest amount of time,

with the requirement that, at x = 3, −1

2
≤ y ≤ 1

2
?

Recall that to answer this problem you need to first solve the free boundary value problem;

if the solution to this problem satisfies−1

2
≤ y ≤ 1

2
at x = 3, then this will be the optimal

solution. If not, then you must solve the two boundary value problems with y = ±1

2
at

x = 3, and compare the values of the objective functional for each of these solutions. This
last step introduces a new problem: given the parameterized curve x(ϕ) and y(ϕ), how
long does the bead take to reach x = 3? If the curve is given as the graph of a function
u(x), say, then we know this time is∫ 3

0

√
1 + u′(x)2

1− u(x)
dx.

However, we don’t know this function u. We must make the change of variables x = x(ϕ)
in the integral. We achieve this using

u′(x) =
dy

dx
=
dy

dϕ

/
dx

dϕ
, u(x(ϕ)) = y(ϕ), and dx = x′(ϕ) dϕ

together with the fact that x = 3 when ϕ = ϕ0, which we must determine. As in the
solution to the Brachistochrone problem, you will need to use Mathematica. You will
need to modify the module given on page 113 which is formulated only for the case that
y = 0 at x = X .

128 CHAPTER 4. VARIATIONAL PROBLEMS

10. Solve the following case of Problem 8 in Chapter 1: find the function y(x) ≤ 0 defined on
−1 ≤ x ≤ 1 which minimizes the arc-length (−1 ≤ x ≤ 1) subject to y(−1) = y(1) = 0,
and the area trapped between the curve y(x) and y = 0 is A, where 0 < A ≤ π/2.

If, with everything else the same, A is changed to be A > π/2, there is no solution to
the corresponding Euler-Lagrange equation which gives y(x) as the graph of a function.
What do you think will be the optimal design of the channel nonetheless?

11. In Bayesian probability theory, the principle of maximum entropy seeks the function u(x),
defined on (0,∞), which maximizes

I(u) = −
∫ ∞

0

u(x) log u(x) dx.

If we normalize the resulting function to have mass 1 and “first moment” 1/α, then we
obtain the constraints ∫ ∞

0

u(x) dx = 1,

∫ ∞
0

xu(x) dx =
1

α
.

Find the optimal function.

12. In this exercise, we demonstrate that the natural boundary condition leads to the optimal
solution among all possible boundary conditions.

(a) Solve

minimize
∫ log 2

0

(
u′β(x)2 + uβ(x)2

)
dx subject to uβ(0) = 1, uβ(log 2) = β

where β is an arbitrary boundary condition. Define

f(β) =

∫ log 2

0

(
u′β(x)2 + uβ(x)2

)
dx

to be the optimal value of the integral for given β. Solve f ′(β) = 0 for the β∗

which results in the minimal integral among all the possible boundary conditions.
The resulting uβ∗(x) is thus the solution to the free boundary condition problem

minimize
∫ log 2

0

(
u′β(x)2 + uβ(x)2

)
dx subject to uβ(0) = 1.

(b) Solve the above free boundary condition problem using the natural boundary condi-
tion. Your two solutions should agree.

13. Exercise 4.13, page 126.

14. When a cylindrical can containing a volume V of fluid is spun around its axis at an an-
gular velocity of ω0 (radians per second), the fluid is subject to a centripetal force toward
the axis (exerted by the wall of the cylinder) and to the gravitational force. The profile

4.6. EXERCISES 129

of the fluid will be such that the total potential energy of the fluid is minimized. Suppose
that the cylinder is of radius 1; by symmetry, the profile can be given in cylindrical co-
ordinates with z = z(r), 0 ≤ r ≤ 1. The potential energy associated with this profile is
(proportional to)

U(z) =

∫ 1

0

(
z(r)2 − 2kz(r)− ω2

0r
2z(r)

)
r dr

where k is a constant. Minimize this functional, subject to the constraint

V = 2π

∫ 1

0

z(r)r dr,

that is, the volume of the fluid is V .

15. Show that, assuming sufficient smoothness of all functions involved, if u is a minimizer
of the second order problem with integral constraint

minimize
∫ b

a

F (x, u(x), u′(x), u′′(x)) dx

subject to (u(a), u(b), u′(a), u′(b)) = (A,B,C,D),

and
∫ b

a

H((x, u(x), u′(x), u′′(x)) dx = k

then u satisfies the second order Euler-Lagrange equation (4.24) for the augmented La-
grangian

F̃ (x, λ, ξ, µ) = F (x, λ, ξ, µ) + zH(x, λ, ξ, µ)

where z is a multiplier to be determined.

16. A variant of Exercise 8 is the following: the car is actually a ride at an amusement park,
and to make it more exciting, it is desired that the car travel quickly throughout the ride,
but still requiring that the ride starts and ends with zero velocity, and that we minimize
fuel costs. We model this as follows:

minimize
∫ 1

0

(u′′(t))2 dt subject to u(0) = 0, u(1) = 1, u′(0) = u′(1) = 0,

and
∫ 1

0

(u′(t))2 dt = k.

The last constraint quantifies the total velocity experienced by the riders. You will need
to use Exercise 15. Solve the problem for k = 1.1 and k = 1.5. Notes:

• The resulting equation is a fourth order, constant coefficient, linear ODE. Using the
(fourth degree) auxiliary polynomial you will find the roots are r = 0 (repeated) and
r2 = z. You will need to consider the three cases z < 0, z = 0 and z > 0. The
case z = 0 is actually just Exercise 8b, so you may disregard this case. The repeated
root r = 0 results in a solution c1t + c2. When z < 0 the other part of the solution
is trigonometric (let w =

√
−z and obtain c3 sinwt + c4 coswt); when z > 0 it is

exponential (let w =
√
z).

130 CHAPTER 4. VARIATIONAL PROBLEMS

• Use Mathematica to solve the system of equations for c1, c2, c3, c4 in terms of w
(and Simplify[]). Obtain u(t, w).

• Have Mathematica Integrate[] (u′(t, w))2 over 0 ≤ t ≤ 1 to obtain a function
f(w).

• Plot[] f(w) to get an idea of what you are after in order to try to solve f(w) = k.
You will have to play with the range of w over which to plot to get a reasonable
graph.

• Use FindRoot[f[w] == k, {w, w0}] with an appropriate w0 to find (nu-
merically) the solution to f(w) = k.

• Plot the resulting solution u(t) over 0 ≤ t ≤ 1, and compute
∫ 1

0

(u′′(t))2 dt to see

how much the solution costs.

• What value of k does the solution to Exercise 8b correspond to?

• Try plotting the solutions with k = 1.1, with k = 1.5, and with no integral constraint
(Exercise 8b) all on the same graphics. You should see that the solution with k =
1.5 is steeper than that with no constraint, which is steeper than the solution with
k = 1.1. Is this consistent with the answer to the previous bullet?

Chapter 5

Optimal Control

5.1 Introduction

EXAMPLE 5.1. Suppose that we have a remote control car which can accelerate and decelerate
according to −a ≤ u ≤ b. We wish to get the car from x = 0 to x = α, starting and finishing
at rest, in the minimal amount of time. What is the best strategy?

State and Controls: The state of a given system is described by a number of parameters ~x =
(x1, x2, . . . , xn) and the system evolves according to a given

state equation: ~x ′(t) = f
(
t, ~x(t), ~u(t)

)
where ~u(t) = (u1, u2, . . . , um) is a given vector of controls on the system.

The control ~u will be constrained by, for example, ~u ∈ K ⊂ Rm.

The state equation also comes with initial and/or final conditions: ~x(0) = ~x0, ~x(T) = ~xT .

In our example, the state of the system at time t consists of the cars position together with its
velocity: ~x(t) = (x1(t), x2(t)) where x1(t) is the position and x2(t) = x′1(t) is its velocity. The
control is the acceleration u(t); the state equation is thus

~x ′(t) = (x′1(t), x′2(t)) = (x2(t), u(t)).

Notice that we have re-written the second order equation for acceleration as a system of first
order equations. Indeed, the state equation is, by definition, a first order ordinary differential
equation. The boundary conditions are ~x(0) = (0, 0) and ~x(T) = (α, 0), where (the unknown)
T is when the process ends.

131

132 CHAPTER 5. OPTIMAL CONTROL

Objective functional: Of course, since we are seeking an optimal control, we must have a cost
which we seek to minimize. This is the objective functional

I(~x, ~u) =

∫ T

0

F (t, ~x(t), ~u(t)) dt, F : (0, T)× Rn × Rm → R.

In the example,

I(~x, u) =

∫ T

0

1 dt

which gives the time taken to complete the process.

Feasible or admissible vectors: The pair ~x(t) and ~u(t) are admissible if

• ~u(t) ∈ K for 0 ≤ t ≤ T ;

• ~x ′(t) = f(t, ~x(t), ~u(t)) for 0 ≤ t ≤ T ;

• ~x(0) = ~x0, ~x(T) = ~xT .

Notice an optimal control problems, as described, is a generalization of the variational problems
of the previous chapter. A variational problem can be posed as an optimal control problem
simply by setting the state equation to be x′(t) = u(t).

5.2 The Hamiltonian

Assume that K = Rm for now. The optimization problem: minimize

I(~x, ~u) =

∫ T

0

F (t, ~x(t), ~u(t)) dt

subject to

~x ′(t) = f(t, ~x(t), ~u(t)), or f(t, ~x(t), ~u(t))− ~x ′(t) = 0

is similar to the variational problem with an integral constraint (we can re-write ~x ′(t) =

f(t, ~x(t), ~u(t)) as
∫ T

0

f(t, ~x(t), ~u(t)) = ~x(T)− ~x(0)). Here, however, we now have a con-

straint at each value of 0 ≤ t ≤ T (it must also hold that
∫ t

0

f(s, ~x(s), ~u(s)) = ~x(t)− ~x(0) for

each t). Consequently, we introduce a multiplier ~p, just like we did for the variational problem,

5.2. THE HAMILTONIAN 133

but now we must have a continuum ~p(t) of multipliers, one for every t. Thus we consider the
augmented functional

I∗(~x, ~u, ~p, ~x ′) =

∫ T

0

[
F (t, ~x(t), ~u(t)) + ~p(t)T

(
f(t, ~x(t), ~u(t))− ~x ′(t)

)]
dt

=

∫ T

0

G(t, ~u, ~p, ~x, ~u ′, ~p ′, ~x ′) dt, say.

Note that we include possible dependence of G on ~u ′ and ~p ′ for generalization later.

The optimal solution will again satisfy (E-L) for G, where we must think of ~λ = (~u, ~p, ~x) and
~ξ = (~u ′, ~p ′, ~x ′); we must extend (E-L) to this case where ~λ is vector-valued. In this context,

(E-L) says
d

dt
G~ξ = G~λ. If we separate out components of this equation, we obtain

d

dt
(G~x ′) = G~x,

d

dt
(G~u ′) = G~u,

d

dt
(G~p ′) = G~p.

Now G = F + ~pT (f − ~x ′), so we can re-write these in terms of F and f . The first equation

says
d

dt

(
−~p
)

= F~x + ~pTf~x, so F~x + ~pTf~x + ~p ′ = ~0; for the second and third we observe that G
is independent of ~u ′ and~p′. Thus

~0 = F~x(t, x, u) + ~p Tf~x(t, x, u) + ~p ′ (5.1)
~0 = F~u(t, x, u) + ~p Tf~u(t, x, u),

~0 = ~x ′ − f(t, x, u).

The Hamiltonian: Define H = F + ~p Tf . In terms of H , then, (E-L) becomes

~p ′ = −∂H
∂~x

,
∂H

∂~u
= ~0, ~x ′ = f(t, ~x, ~u).

Since we have derivatives of ~x and ~p, we must have sufficiently many additional constraints to
determine the solution. These constraints may come in the form of boundary conditions. How-
ever, if at an end-point a boundary condition for xj is free then we impose the transversality
condition pj = 0 at this end-point. (One would have to go through the derivation of (E-L) for
this more complicated problem to see why this is the correct condition.)

EXAMPLE 5.2. With I(x, u) =

∫ 1

0

u(t)2 dt, state equation x′(t) = f(t, x, u) = u(t) + ax(t)

and boundary condition x(0) = 1, find the optimal control u. Here a is a constant, and the
boundary condition at t = 1 is free.

We compute

H = F + pf = u2 + p(u+ ax).

134 CHAPTER 5. OPTIMAL CONTROL

The (E-L) equations yield

p′ = −∂H
∂x

= −ap, 0 =
∂H

∂u
= 2u+ p, x′ = u+ ax.

The second equation implies u = −1

2
p, so the third can be re-written x′ = −1

2
p+ ax. We also

have x(0) = 1, and there is no boundary condition at x = 1 so we impose the transversality
condition p(1) = 0.

The equation p′ = ap has solution p(t) = ce−at and p(1) = 0 gives p(t) = 0 for all t. Then
x(t) = eat and u(t) = 0 for all t; the optimal control is to do nothing! Looking back at the
objective function, we might have seen that u = 0 will minimize I(u), and x′ = u + ax = ax
can satisfy the given boundary condition.

Now let’s change the boundary conditions to get something more interesting: we consider
x(0) = 1, x(1) = 0. Again we have p(t) = ce−at, but no longer require p(1) = 0. Plug-

ging this into x′ = −1

2
p+ ax and solving the ODE we obtain

x(t) =
c

4a
e−at + deat.

Imposing the boundary conditions we find

c =
2aea

sinh a
, d = − e−a

2 sinh a
, x(t) =

ea

2 sinh a
e−at − e−a

2 sinh a
eat.

This time we obtain the optimal control via u = −1

2
p to obtain u(t) = −ae

a(1−t)

sinh a
.

EXAMPLE 5.3. This is a vector-valued example. Let the cost be the same as the previous
example, but consider x′′(t) = u(t) (like the introductory example) with x(0) = x′(0) = 1 and
x(1) = 0. We can think of the control as acceleration and the cost fuel consumption. Re-writing
as a system of first order equations, we obtain

x′1 = x2, x′2 = u

x1(0) = 1, x1(1) = 0, x2(0) = 1.

With ~x = [x1, x2]T , ~x ′ = f(t, ~x, u) = [x2, u]T . Now H = F + ~p Tf = u2 + p1x2 + p2u. Since
x2 is free at t = 1, we set p2(1) = 0. The full (E-L) set, together with the endpoint conditions
is now

0 =
∂H

∂u
= 2u+ p2

p′1 = −∂H
∂x1

= 0, p′2 = −∂H
∂x2

= −p1

x′1 = f1 = x2, x′2 = f2 = u

x1(0) = 1, x1(1) = 0

x2(0) = 1, p2(0) = 0.

5.2. THE HAMILTONIAN 135

Again, from the first equation we have u = −1

2
p2. Starting with p′1 = 0 we obtain (easily)

p1 = c1

p2 = −
∫
p1 dt = −c1t+ c2

u = −1

2
p2 =

c1

2
t− c2

2

x2 =

∫
u dt =

c1

4
t2 − c2

2
t+ c3

x1 =

∫
x2 dt =

c1

12
t3 − c2

4
t2 + c3t+ c4.

Now it’s simply a matter of imposing the boundary conditions to find the cj . It can be efficient
to carefully choose which equation to use. The second with p2(1) = 0 gives c1 = c2; the fourth
with x2(0) = 1 and the fifth with x1(0) = 1 give c3 = c4 = 1. Thus x1 =

c1

12
t3 − c1

4
t2 + t+ 1,

and x1(1) = 0 gives c1 = 12. We have as our solution

u(t) = 6t− 6 x(t) = x1(t) =
1

2
t3 − 3

2
t2 + t+ 1.

In the above examples, we have been minimizing cost over a given time interval. Another
important and interesting problem is to minimize the time given a fixed cost.

EXAMPLE 5.4. Suppose we have a process for which x(0) = 1 and we want to obtain x(T) = 0
in the least time possible; the process must satisfy the state equation

x′(t) = ax(t) + u(t)

for a given constant a, and we are constrained by∫ T

0

u(t)2 dt = K

for another given constant K. The functional we wish to minimize is

I(x, u) =

∫ T

0

1 dt

for this gives the total time taken. Recall that integral constraints for variational problems were
handled by introducing a multiplier into the Lagrangian. We do the same here, which results in
the Hamiltonian

H = 1 + zu2 + p(ax+ u).

We must solve

p′ = ap 0 = 2zu+ p x′ = ax+ u

136 CHAPTER 5. OPTIMAL CONTROL

plus the constraints. We obtain p(t) = c1e
−at and u(t) = − c1

2z
e−at. Then

x′ = ax− c1

2z
e−at ⇒ x(t) =

c1

4az
e−at + c2e

at.

Setting x(0) = 1 and solving for c2, c2 = 1− c1

4az
. This gives

x(t) = eat
(

1− c1

4az

)
+

c1

4az
e−at.

Now

K =

∫ T

0

u(t)2 dt =

∫ T

0

c2
1

4z2
e−2at dt =

c2
1

8az2

(
1− e−2aT

)
and

0 = x(T) = eaT
(

1− c1

4az

)
+

c1

4az
e−aT

together imply c1 = 2Kz and T = − 1

2a
ln
(

1− 2a

K

)
. The solution make sense only if K > 2a.

The optimal control is then

u(t) = −Ke−at.

Our original problem of accelerating and then decelerating a model car is still not solvable by
these methods. We don’t have a mechanism by which we can impose the bounds on u. Without
bounds on u, we can clearly make the time as small as possible by accelerating arbitrarily
quickly and decelerating again arbitrarily quickly. We need Pontryagin’s Principle.

5.2.1 Pontryagin’s Principle

We now consider optimal control problems where we put constraints on the control, ~u(t) ∈
K ⊂ Rm. Our goal is to evolve the system ~x from some given initial state ~x(0) to (if not free)
some final state ~x(T), always satisfying the state equation ~x ′(t) = f(t, ~x(t), ~u(t)), and to do so

in such a way as to minimize
∫ T

0

F (t, ~x, ~u) dt.

We’ll derive some necessary conditions which must be satisfied, so suppose that ~u(t) is optimal,
and ~x(t) is the corresponding state function. Suppose that at some (fixed, for the moment) time
0 ≤ t ≤ T , the system is in state ~x(t). Consider the problem of minimizing the objective func-
tional from this time on, i.e. finding the optimal control ~u(s) and corresponding state function

5.2. THE HAMILTONIAN 137

~y(s) for t ≤ s ≤ T with initial condition now ~y(t) = ~x(t). We define the function S(t, ~x(t)) to
be the value of the functional attained by this optimal control:

S(t, ~x(t)) = min
~u

{∫ T

t

F (s, ~y(s), ~u(s)) ds :

~y ′(s) = f(s, ~y(s), ~u(s)), ~u(s) ∈ K, t < s < T, ~y(t) = ~x(t)
}
.

This function S satisfies the following somewhat complicated equality which we will explain
immediately following: for any t′ > t,

S(t, ~x(t)) = min
~y

{
min
~u

{∫ t′

t

F (s, ~z(s), ~u(s)) ds : ~z ′(s) = f(s, ~z(s), ~u(s)), ~u(s) ∈ K,

t < s < t′, ~z(t) = ~x(t), ~z(t′) = ~x(t) + y(t′)(t′ − t)
}

+ S(t′, ~x(t) + y(t′)(t′ − t))
}
.

The inner minimization yields, for a given ~y, what results from the optimal way of getting
from state ~x(t) at time t to state ~x(t) + ~y(t′)(t′ − t) at time t′. Now, again with this given ~y,
we add S(t′, ~x(t) + ~y(t′)(t′ − t)), which is the minimal possible result in getting from state
~x(t) + ~y(t′)(t′ − t) at time t′ to the final state at time T . In other words, for a given ~y we have
found the optimal control which “links” the state ~x(t) at time t with the state ~x(t) +~y(t′)(t′− t)
at time t′. Now, by definition, S(t, ~x(t)) is the minimal result for getting from ~x(t) at time t
to the final state at time T , so it must equal the minimum of what we just described over all
possible ~y.

We can re-write this, with ∆t = t′ − t as

0 = min
~y

{
min
~u

{ 1

∆t

∫ t+∆t

t

F (s, ~z(s), ~u(s)) ds : ~z ′(s) = f(s, ~z(s), ~u(s)), ~u(s) ∈ K,

t < s < t+ ∆t, ~z(t) = ~x(t), ~z(t+ ∆t) = ~x(t) + y(t+ ∆t)∆t
}

+
S(t+ ∆t, ~x(t) + ~y(t+ ∆t)∆t)− S(t, ~x(t))

∆t
)
}
.

Notice that the conditions within the inner minimization can be combined as

~z(t+ ∆t)− z(t)

∆t
= ~y(t+ ∆t)

and taking the limit as ∆t → 0, this becomes ~z ′(t) = f(t, ~x(t), ~u(t)) = ~y(t). By the funda-
mental theorem of calculus, together with the definition of the derivative, we obtain

0 = min
~y

{
min
~u∈K

{
F (t, ~x, ~u(t)) : ~y(t) = f(t, ~x(t), ~u(t))

}
+
∂S

∂t
(t, ~x(t)) + ~y(t)

∂S

∂x
(t, ~x(t))

}
.

We can re-write this as

∂S

∂t
(t, ~x(t)) = −min

~u∈K

{
F (t, ~x(t), ~u(t)) + f(t, ~x(t), ~u(t))

∂S

∂x
(t, ~x(t))

}
.

138 CHAPTER 5. OPTIMAL CONTROL

Now, from the definition of S, since (~x(t), ~u(t)) is optimal, for each t it must hold that

S(t, ~x(t)) =

∫ T

t

F (s, ~x(s), ~u(s)) ds, ~x ′(s) = f(s, ~x(s), ~u(s)), t < s < T.

If we differentiate this with respect to t and combine it with what we just derived, we obtain
(after some work)

d

dt

∂S

∂x
= −∂F

∂x
(t, ~x(t), ~u(t))− ∂S

∂x

∂f

∂x
(t, ~x(t), ~u(t)).

This is of the same form as the first equation (5.1) satisfied by the Hamiltonian. This motivates
us to define

p̃(t, ~x) =
∂S

∂x
(t, ~x)

and, as usual, consider the Hamiltonian

H(t, ~x, ~u, ~p) = F (t, ~x, ~u) + ~pTf(t, ~x, ~u)

where, when ~x(t) is optimal, ~p(t) = p̃(t, x(t)) =
∂S

∂x
(t, ~x(t)).

THEOREM 5.5 (Pontryagin’s principle). If (~x(t), ~u(t)) is optimal for the control problem: min-
imize ∫ T

0

F (t, ~x, ~u) dt, ~x ′(t) = f(t, ~x(t), ~u(t)), ~u(t) ∈ K

with ~x(0) = ~x0, ~x(T) = ~xT given, then there must exist a function ~p(t) such that

~p ′(t) = −∂H
∂x

(t, ~x(t), ~u(t), ~p(t)),

H(t, ~x(t), ~u(t), ~p(t)) = min
~v∈K

H(t, ~x(t), ~v, ~p(t)),

~x ′(t) = f(t, ~x(t), ~u(t)), ~x(0) = ~x0, ~x(T) = ~xT .

Note: if, say, the endpoint t = T is free, then the condition x(T) = xT gets replaced by
~p(T) = 0.

Applying this theorem can be non-trivial. We’ll look at a couple of examples.

EXAMPLE 5.6. Recall the original problem of controlling a remote control car. Here K =
[−a, b] and the cost functional is

I =

∫ T

0

1 dt

5.2. THE HAMILTONIAN 139

with the conditions x′′(t) = u(t), u ∈ K, x(0) = x′(0) = 0, x(T) = α, x′(T) = 0. Re-writing
as a system of first order equations, as earlier,

~x ′ = [x′1, x
′
2]T = [x2, u]T , u ∈ K

~x(0) = [0, 0]T , ~x(T) = [α, 0]T .

The Hamiltonian is H = 1 + p1x1 + p2x2, and at an optimal solution, Pontryagin’s principle
imposes

p′1 = 0, p′2 = −p1 ⇒ p1 = c1, p2 = −c1t+ c2.

The second condition in Theorem 5.5 is now, for each 0 < t < T ,

1 + c1x1(t) + (−c1t+ c2)u(t) = min
v∈[−a,b]

{
1 + c1x1(t) + (−c1t+ c2)v

}
,

or, equivalently,

(−c1t+ c2)u(t) = min
v∈[−a,b]

(−c1t+ c2)v.

Recall, we consider t fixed in this problem. Clearly, the minimum is v = −a if −c1t + c2 > 0
and v = b if −c1t+ c2 < 0. If −c1t+ c = 0 then v can take any value in [−a, b]. So,

u(t) =

−a, −c1t+ c2 > 0,
b, −c1t+ c2 < 0,
anything, −c1t+ c2 = 0.

At t = 0 we must have u(0) = b (in order for the car to move forward), so in fact u(t) = b until
−c1t+c2 = 0, that is until t = t0 = c2/c1. For t > t0,−c1t+c2 > 0, so then u(t) = a. Bringing
this information back to ~x, we have x′2 = b and x′1 = x2, 0 ≤ t ≤ t0, with x1(0) = x2(0) = 0.

Thus x1(t) =
1

2
bt2. Then, for t > t0, we have x′2 = −a and x′1 = x2, t0 ≤ t ≤ T , with

x1(t0) =
1

2
bt20, x2(t0) = bt0. From this we deduce:

x2 = −at+ β

x′1 = x2 ⇒ x1 = −a
2
t2 + βt+ γ

b

2
t0t

2 = x1(t0) = −a
2
t20 + βt0 + γ

bt0 = x2(t0) = −at0 + β.

These last two equations easily give β = t0(a+ b), γ = −1

2
t20(a+ b). Thus

x1(t) = −a
2
t2 + t0(a+ b)t− t20

2
(a+ b).

140 CHAPTER 5. OPTIMAL CONTROL

We still don’t know t0, nor c1, c2. We have the condition x′(T) = 0 which gives T = t0(a +
b)/a, and putting this into x(T) = α,

−a
2
t20

(a+ b)2

a2
+ t20

(a+ b)2

a
− t20

a+ b

2
= α ⇒ t0 =

√
2aα

b(a+ b)
⇒ T =

√
2(a+ b)α

ab
.

With a = 3 and b = 2 (so we can brake more powerfully than we can accelerate), and α = 2
we obtain the following results for x(t) and x′(t) (we find t0 ≈ 1.1, T = 1.83):

0.5 1.0 1.5
t

0.5

1.0

1.5

2.0

x

Appendix A

Constant coefficient, linear, ordinary
differential equations

We briefly outline how to solve constant coefficient, linear, ordinary differential equations. Such
an equation, of order n, is of the form

any
(n)(t) + an−1y

(n−1)(t) + · · ·+ a1y
′(t) + a0y(t) = f(t), (A.1)

where a0, . . . , an are constants, and an 6= 0. When such equations are of second order and
homogeneous (zero “right-hand-side”), this is a review of what is covered in Math 331, though
perhaps from a slightly different point of view. When such equations are non-homogeneous,
this is sometimes covered in Math 331, and sometimes covered in Math 435. We will only need
the basic structure of how to obtain solutions.

An ordinary differential equation (ODE) is linear if, and only if, whenever y1(t) and y2(t) are
solutions, so too is y(t) = αy1(t) + βy2(t) for any scalars α, β.

A.1 Homogeneous ODE

An ODE is homogeneous if, and only if, the function which is identically zero is a solution. Of
course, this is not likely to be the only solution. Looking at (A.1) we see that this is equivalent
to f(t) = 0.

A.1.1 Second order, homogeneous

Consider ay′′ + by′ + cy = 0, a, b, c constant, a 6= 0. Since the equation is of second order, the
general solution must be able to be written as a linear combination of two linearly independent

141

142APPENDIX A. CONSTANT COEFFICIENT, LINEAR, ORDINARY DIFFERENTIAL EQUATIONS

solutions. We might guess that solutions should be made out of exponentials since we seek
solution y which when differentiated is comparable to the solution y itself. If we “try” y = ert

we find

ar2ert + brert + cert = 0, so ar2 + br + c = 0.

The polynomial left-hand-side is called the auxiliary polynomial (the equation is often called
the characteristic equation) for the ODE. Of course this equation has solutions

r =
−b±

√
b2 − 4ac

2a
.

We will see that solutions vary significantly depending on the sign of b2 − 4ac.

Distinct real roots: The general solution is y = c1e
r1t + c2e

r2t.

EXAMPLE A.1. The ODE y′′ + 5y′ + 6y = 0 has characteristic equation r2 + 5r + 6 = (r +
3)(r + 2) = 0. So y1(t) = e−2t and y2(t) = e−3t are both solutions and the general solution is
y(t) = c1e

−2t + c1e
−3t.

One repeated real root: We have one solution ert. A second independent solution is found to
be tert.

EXAMPLE A.2. The ODE y′′−y′+ 1

4
y = 0 has auxiliary equation with the repeated root r =

1

2
.

Thus y1(t) = et/2 and y2(t) = tet/2 are independent solutions.

Complex (conjugate) roots: As before we obtain exponential solutions, but this time they are
“complex-exponential” solutions. The roots are of course

r =
−b±

√
4ac− b2i

2a
= − b

2a
±
√

4ac− b2

2a
i = α± βi, say,

which shows that they (always) occur in complex conjugate pairs, i.e. r1 = α+βi, r2 = α−βi.
This means that we have the complex valued solutions

z1(t) = e(α+iβ)t = eαteiβt = eαt
(
cos(βt) + i sin(βt)

)
z2(t) = e(α−iβ)t = eαte−iβt = eαt

(
cos(βt)− i sin(βt)

)
.

It is a (readily checked) fact that if z(t) = p(t) + iq(t) solves az′′ + bz′ + c = 0, then each of
p(t) and q(t) solve the same equation. Thus we have solutions

y1(t) = eαt cos(βt) y2(t) = eαt sin(βt).

Thus the general solution is

y(t) = c1y1(t) + c2y2(t) = eαt
(
c1 cos(βt) + c2 sin(βt)

)
.

A.1. HOMOGENEOUS ODE 143

EXAMPLE A.3. Consider y′′+ y′+ y = 0 with y(0) = 2, y′(0) = −3. We find r = −1

2
± i
√

3

2
and so

y(t) = e−
1
2
t
(
c1 cos(

√
3t/2) + c2 sin(

√
3t/2)

)
.

At t = 0, y(0) = 2 = c1. Next,

y′(t) = −1

2
e−

1
2
t
(
c1 cos(

√
3t/2) + c2 sin(

√
3t/2)

)
+ (
√

3/2)e−
1
2
t
(
−c1 sin(

√
3t/2) + c2 cos(

√
3t/2)

)
so y′(0) = −3 = −c1/2 +

√
3c2/2 = −1 +

√
3c2/2 gives c2 = −1/

√
3. �

EXAMPLE A.4. The ODE y′′+ 9y = 0 gives r2 + 9 = 0 so r = ±3i and the general solution is
y(t) = c1 cos(3t) + c2 sin(3t).

REMARK. Notice that we came up with two complex valued solutions; the real and imaginary
parts of each solution yields a real valued solution. One might think that this gives four solutions
– but there are only two independent solutions (which is all we need).

A.1.2 Higher order, homogeneous

Now consider

any
(n)(t) + an−1y

(n−1)(t) + · · ·+ a1y
′(t) + a0y(t) = 0. (A.2)

Once again, we are lead to consider exponential solutions y = ert; upon substitution into (A.2)
we obtain the auxiliary polynomial

anr
n + an−1r

n−1 + · · ·+ a1r + a0.

Allowing complex and repeated roots, this polynomial has roots r1, . . . , rn, and the (possibly
complex valued) functions erjt are solutions to the ODE (A.2). From each pair of complex-
conjugate roots we obtain two linearly independent solutions, as above. From each distinct real
root, we obtain one solution. If a real root r has multiplicity k (is repeated k times), then we
obtain k linearly independent solutions

ert, tert, · · · , tk−1ert.

Combining these, we thus obtain n linearly independent solutions, and hence the general solu-
tion as an arbitrary linear combination of these.

EXAMPLE A.5. Consider y(5)(t)−2y(4)(t)+y(3)(t)−2y′′(t) = 0. This has auxiliary polynomial
which factors as r2(r2 + 1)(r − 2). Thus y(t) = e0t = 1, y(t) = te0t = t, y(t) = eit =
cos t + i sin t and y(t) = e2t are all solutions. From the complex valued solution we obtain the
two real-valued solutions y(t) = cos t and y(t) = sin t. Finally, the general solution is

y(t) = c1 + c2t+ c3 cos t+ c4 sin t+ c5e
2t.

144APPENDIX A. CONSTANT COEFFICIENT, LINEAR, ORDINARY DIFFERENTIAL EQUATIONS

A.2 Non-homogeneous ODE

When the right-hand-side is non-zero, it is no longer necessarily true that a linear combination
of solutions is again a solution. However the following important result holds.

Suppose that yp(t) is any “particular” solution to

any
(n)
p (t) + an−1y

(n−1)
p (t) + · · ·+ a1y

′
p(t) + a0yp(t) = f(t),

and that yh(t) is the general solution to the corresponding homogeneous ODE

any
(n)
h (t) + an−1y

(n−1)
h (t) + · · ·+ a1y

′
h(t) + a0yh(t) = 0.

Then the general solution to the non-homogeneous ODE is

y(t) = yh(t) + yp(t).

So, finding the general solution to a non-homogeneous (linear, constant coefficient) ODE comes
down to (1) finding the general solution to the corresponding homogeneous ODE (which we
know how to do from the above), and (2) finding just one solution to the non-homogeneous
ODE. It is (2) which we briefly address here. The method of finding a particular solution is
known as the method of undetermined coefficients. Its applicability is restricted to a small set
of right-hand-side (RHS) functions f(t), and the approach is, essentially, to guess a solution and
then determine appropriate constants to make the guess work. We tend to try solutions which
are (undetermined) multiples of the RHS, adjusting by multiplying by t, t2, . . . if we happen to
coincide with one of the solutions to the homogeneous problem.

In what follows, when we refer to roots, we mean the roots of the auxiliary polynomial for the
homogeneous problem. We present the solution for roots with multiplicity less than or equal to
2; these extend for higher multiplicity roots in the obvious way.

1. If the RHS is an exponential:

f(t) = Aeβt ⇒ yp(t) =

Ceβt, if β is not a real root,
Cteβt, if β is a distinct real root,
Ct2eβt, if β is a repeated real root,
· · · , if β is a root of higher multiplicity.

To find the constant C, we substitute yp(t) into the non-homogeneous ODE.

EXAMPLE A.6. Consider y′′+5y′+6y = f(t). The homogeneous problem has auxiliary
polynomial r2 +5r+6 = (r+3)(r+2), so y1(t) = e−2t and y2(t) = e−3t are independent
solutions to the homogeneous problem.

A.2. NON-HOMOGENEOUS ODE 145

(a) if f(t) = e−t, we try yp(t) = Ce−t for unknown C. Plugging in we find that
2Ce−t = e−t and so we set C = 1/2. The general solution is then

y(t) = yh(t) + yp(t) = c1e
−2t + c2e

−3t +
1

2
e−t;

(b) if f(t) = e−2t, we cannot try yp(t) = Ce−2t since plugging this into the ODE will
give 0, not f(t). Instead, we try yp(t) = te−2t, and upon substitution and some
algebra, C = 1.

2. If the RHS is a polynomial pn(t), let n be the order of the polynomial; then

yp(t) =

qn(t), a polynomial of the same order, if 0 is not a real root,
tqn(t), a polynomial of the order n+ 1, if 0 is a distinct real root,
t2qn(t), a polynomial of the order n+ 2, if 0 is a repeated real root,
· · · , if 0 is a root of higher multiplicity.

where qn(t) = a0 + a1t+ · · ·+ ant
n, the coefficients aj to be determined.

EXAMPLE A.7. Consider again y′′ + 5y′ + 6y = f(t). The homogeneous problem has
auxiliary polynomial r2 +5r+6 = (r+3)(r+2) = 0. If f(t) = 1+ t, we try yp = a+ bt
and find that 6a+ 5b+ 6bt = 1 + t which determines a and b.

EXAMPLE A.8. Consider y′′ − 2y′ = 1 + t. Here y1 = 1, y2 = e2t. If we try yp = a+ bt
again, we find −2b = 1 + t which clearly cannot hold (for all t). We need to try yp =
at+ bt2 which yields −2a+ 2b− 4bt = 1 + t which this time determines a and b.

3. If the RHS is (exponential times) trigonometric,

f(t) = eαt(A cos βt+B sin βt)

(some of α,A,B may be zero, but β 6= 0),

yp(t) =

eαt(C1 cos βt+ C2 sin βt), if α + βi is not a root,
teαt(C1 cos βt+ C2 sin βt), if α + βi is a distinct root,
t2eαt(C1 cos βt+ C2 sin βt), if α + βi is a repeated root,
· · · , if α + βi is a root of higher multiplicity.

146APPENDIX A. CONSTANT COEFFICIENT, LINEAR, ORDINARY DIFFERENTIAL EQUATIONS

Appendix B

Mathematical Background

Here is a collection of material we will need throughout the course. Some of it is material you
have seen (I have indicated the classes where you might have seen it) and some of it is new. We
will address the new material as we need it.

B.1 Vector Space Notions

B.1.1. (204) Linear combination of vectors.

B.1.2. (204) Linear independence of vectors.

B.1.3. (204) Subspace.

B.1.4. (204) Span of a set of vectors.

B.1.5. (204) Basis for a vector space or subspace.

B.1.6. (204) Dimension of a vector space or subspace.

B.1.7. (204) Rn and Cn.

B.2 Matrix Notions

B.2.1. (204) Rank of an m× n matrix.

B.2.2. (204) Determinant of a square matrix.

B.2.3. A pth order minor – rank equals the highest order of the nonzero minor.

147

148 APPENDIX B. MATHEMATICAL BACKGROUND

B.2.4. (204) Invertibility of square matrices (non-singular).

B.2.5. (204) Eigenvalues and eigenvectors of square matrices.

B.2.6. (204) The characteristic polynomial of a square matrix.

B.2.7. (304) Eigenvectors corresponding to distinct eigenvalues always independent, and are
mutually orthogonal for symmetric matrices.

B.2.8. (304) Diagonalization of square matrices with a full linearly independent set of eigenvec-
tors.

B.2.9. (204) Transpose AT of a matrix A.

B.2.10. (304) Real symmetric matrices are diagonalizable.

B.3 Inner Products and Norms

B.3.1. (224/204/304) Euclidean inner product on Rn, ~x ·~y. This can be re-expressed as ~xT~y. The
more general notation for an inner product is 〈~x, ~y〉.

B.3.2. (304) Properties of an inner product on Rn:

1. 〈~x, ~x〉 ≥ 0, 〈~x, ~x〉 = 0 iff ~x = ~0.

2. 〈~x, ~y〉 = 〈~y, ~x〉.
3. 〈~x+ ~y, ~z〉 = 〈~x, ~z〉+ 〈~y, ~z〉.
4. 〈α~x, ~y〉 = α〈~x, ~y〉 for all α ∈ R.

B.3.3. (224/304) Orthogonality of vectors: 〈~x, ~y〉 = 0.

B.3.4. (224/304) Norm of vectors: ‖~x‖ =
√
〈~x, ~x〉. We shall use |~x| for

√
~x · ~x and ‖~x‖ for

(perhaps) other general norms.

B.3.5. (304) Cauchy-Schwartz Inequality: ‖〈~x, ~y〉‖ ≤ ‖~x‖‖~y‖.

B.3.6. (304) The norm satisfies:

1. ‖~x‖ ≥ 0, ‖~x‖ = 0 iff ~x = ~0.

2. ‖α~x‖ = |α|‖~x‖, for all α ∈ R.

3. ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖ (the triangle inequality), with equality iff ~x and ~y are linearly
dependent.

B.3.7. (304) If ~x and ~y are orthogonal then ‖~x+ ~y‖2 = ‖~x‖2 + ‖~y‖2.

B.4. LINEAR TRANSFORMATIONS 149

B.3.8. Other norms exist for Rn, for example:

‖~x‖p =

{(
|x1|p + · · ·+ |xn|p

)1/p
, 1 ≤ p <∞

max
{
|x1|, . . . , |xn|

}
, p =∞

B.3.9. (304) Orthogonal complement S⊥ of a subspace S.

B.3.10. The notion of a norm can be applied also to matrices. An example (equivalent to the
Euclidean norm on Rmn) is

‖A‖2 =
(m∑
i=1

n∑
j=1

|aij|2
)1/2

.

B.3.11. In addition to the conditions in B.3.6, we require ‖AB‖ ≤ ‖A‖‖B‖.

B.4 Linear Transformations

We use the term “transformation”, or “map”, for functions between vector spaces (the term
“function” is often reserved for maps when the range is contained in R).

B.4.1. (304) L : Rn → Rm is a linear transformation if

1. L(α~x) = αL(~x) for all ~x ∈ Rn and α ∈ R.

2. L(~x+ ~y) = L(~x) + L(~y).

B.4.2. (304) Once we specify bases for Rn and Rm, a linear transformation is represented by an
m × n matrix: if x̂ is the coordinate vector of a vector ~x ∈ Rn in terms of the chosen
basis, and ~y = L(~x), then ŷ, the coordinate vector ~y in the chosen basis for Rm, is given
by ŷ = Ax̂.

B.4.3. (304) Given bases {~e1, . . . , ~en} and {~u1, . . . ~un} for Rn, the matrix

T =
[
~u1, . . . ~un

]−1[
~e1, . . . , ~en

]
is the transformation matrix from {~e1, . . . , ~en} to {~u1, . . . ~un}. Then, if ~x is a coordinate
vector w.r.t. {~e1, . . . , ~en} and x̂ is the coordinate vector w.r.t. {~u1, . . . ~un}, it holds that
x̂ = T~x.

B.4.4. (304) Orthogonal projection onto a subspace.

B.4.5. (304) Range (or image)R(L), and nullspace (or kernel) N (L).

B.4.6. (304) For a matrix A,R(A)⊥ = N (AT) and N (A)⊥ = R(AT).

150 APPENDIX B. MATHEMATICAL BACKGROUND

B.4.7. If we have norms ‖·‖(n) and ‖·‖(m) on Rn and Rm respectively, then we define an induced
(operator) norm on m× n matrices A to be

‖A‖ = max
‖~x‖(n)=1

‖A~x‖(m).

Thus we are seeking the “largest” vector in the image of the unit sphere under multipli-
cation by A.

For example, if we use the Euclidean norm on Rn, then the induced norm for n × n
matrices A is

‖A‖ =
√
λ1

where λ1 is the largest eigenvalue of the matrix ATA.

B.5 Quadratic Forms

A quadratic form f : Rn → R is a function which can be expressed as

f(~x) = ~xTQ~x

with Q an n× n real matrix. WLOG, Q is symmetric.

B.5.1. A quadratic form is:

1. positive definite if ~xTQ~x > 0 for all ~x 6= 0,

2. positive semidefinite if ~xTQ~x ≥ 0 for all ~x 6= 0, and

3. similarly for negative definite and negative semidefinite.

B.5.2. The “leading principal minors” of Q are the determinants of the sub-matrices compris-
ing the top-left j × j corner of Q. Sylvester’s Criterion: A quadratic form ~xTQ~x (Q
symmetric) is positive definite iff the leading principal minors of Q are positive.

B.5.3. There is another condition which gives positive semi-definiteness. A general “principal
minor” is a determinant of the result of deleting any number 1 ≤ j ≤ n rows and columns
– if row j is removed, then so too is column j. A quadratic form ~xTQ~x (Q symmetric) is
positive semi-definite iff all the principal minors are non-negative (greater than or equal
to zero).

B.5.4. We carry the notions of (semi)definiteness of a quadratic form to matrices Q by consid-
ering the corresponding quadratic form. A matrix Q is said to be indefinite if it is neither
positive- nor negative-semidefinite.

B.5.5. A symmetric matrix Q is positive (semi)definite iff all the eigenvalues of Q are positive
(non-negative).

B.6. NOTIONS FROM GEOMETRY 151

B.5.6. Rayleigh’s Inequality: If Q is an n× n real symmetric positive definite matrix, then

λmin|~x|2 ≤ ~xTQ~x ≤ λmax|~x|2

where λmin, λmax are the minimal and maximal eigenvalues of Q.

B.6 Notions from Geometry

B.6.1. (224) The line segment between points ~p and ~q can be parameterized by α~p + (1 − α)~q,
0 ≤ α ≤ 1.

B.6.2. (224) If ~u 6= 0 then the set of ~x satisfying ~xT~u = c is a “hyperplane” in Rn. It is a
subspace iff c = 0. The vector ~u is orthogonal to the hyperplane.

B.6.3. A hyperplaneH = {~x : ~xT~u = c} divides Rn into two “half-spaces”H+ = {~x : ~xT~u ≥
c} and H− = {~x : ~xT~u ≤ c}.

B.6.4. The intersection of finitely many subspaces is again a subspace; the intersection of finitely
many m hyperplanes is called a “linear variety”. It can be understood as a “translation”
of a subspace. Any linear variety can be written in the form

{~x ∈ Rn : A~x = ~b}

for somem×nmatrixA and vector~b ∈ Rm (indeed, the columns ofA are the normal vec-
tors of the hyperplanes and the components of~b are the RHS constants). If dimN (A) = r
then the linear variety is said to have dimension r (it is the translation of an r-dimensional
subspace).

B.6.5. A set K ⊂ Rn is convex if for all ~x, ~y ∈ K it holds that the line-segment joining ~x to ~y is
entirely contained with K also: i.e.

α~x+ (1− α)~y ∈ K for all 0 ≤ α ≤ 1 and for all ~x, ~y ∈ K.

B.6.6. (226) An ε-ball around ~x is the set

Bε(~x) = {~y : |~y − ~x| < ε},

where ε > 0. It does not contain the “boundary”.

B.6.7. (312) A set U is open if for every point ~x ∈ U it is possible to find ε~x > 0 such that
Bε~x(~x) ⊂ U . A set V is closed if its complement Rn \ V is open.

B.6.8. (312) A set U is bounded if there exists R such that |~x| < R for all ~x ∈ U .

B.6.9. A set K ⊂ Rn is compact if it is both closed and bounded.

B.6.10. Theorem of Weierstrass: If K is a compact set, and f : K → R is continuous, then f
attains its maximum and its minimum on K.

152 APPENDIX B. MATHEMATICAL BACKGROUND

B.7 Notions of Calculus

B.7.1. (224) A function f : Rn → Rm is said to be differentiable (at ~x0) if there is a linear
transformation L : Rn → Rm which “approximates f to first order at x0” (we shall not
bother being more precise for the moment). See B.7.2

B.7.2. A function f : Rn → Rm can be represented as [f1, . . . , fm]T where each of fi : Rn → R.
If f is differentiable, each fj may be differentiated w.r.t. any of its n variables xj . With
respect to the standard bases (for Rn and Rm), the linear operator in B.7.1 has the m× n
matrix representation

Df(~x0) =
[∂fi
∂xj

(~x0)
]

1≤i≤m,1≤j≤n
=

∂f1
∂x1

· · · ∂f1
∂xn

...
∂fm
∂x1

· · · ∂fm
∂xn

 (~x0).

B.7.3. The matrix in B.7.2 is called the Jacobian matrix of f at ~x0 and is denoted Df(~x0).

B.7.4. (224) The linear (or affine) approximation to f near ~x0 is

A(~x) = f(~x0) +Df(x0)(~x− ~x0)

B.7.5. (224) If f : Rn → R is differentiable then the gradient vector of f at ~x0 is

∇f(~x0) =

∂f
∂x1

(~x0)
...

∂f
∂xn

(~x0)

 = Df(~x0)T .

B.7.6. If f : Rn → R is twice differentiable then the Hessian matrix of f is

D2f =

fx1x1 fx2x1 · · · fxnx1
fx1x2 fx2x2 · · · fxnx2

...
...

fx1xn fx2xn · · · fxnxn

 .

B.7.7. If f is k times differentiable, and every derivative is continuous, then we say f ∈ Ck.

B.7.8. (224) The chain rule for functions of several variables:

1. if g : U ⊂ Rn → R and f : (a, b) ⊂ R→ U are differentiable, then F : (a, b)→ R,
F (t) = g(f(t)) is differentiable and F ′(t) = Dg(f(t))Df(t) = ∇g(f(t))TDf(t).

2. If g : U ⊂ Rn
~x → R and f : W ⊂ Rm

~y → U are differentiable, then F : W → R,
F (~y) = g(f(y)) is differentiable and DF (~y) = Dg(f(~y))Df(~y).

B.7. NOTIONS OF CALCULUS 153

B.7.9. (224) Gradient vectors and level sets: let f : Rn → R be differentiable at ~x0. Then

1. ∇f(~x0) is perpendicular to (the tangent hyperplane to) the level set through ~x0 at
x0, and points in the direction of maximum increase of f from ~x0.

2. The graph of f is the set {[~xT , f(~x)]T} ⊂ Rn+1; if we use coordinates [~xT , z]T for
Rn+1 then the tangent hyperplane to the graph of f at ~x0 has equation

z − z0 = Df(~x0)(~x− ~x0) = (~x− ~x0)T∇f(~x0).

B.7.10. (225) The divergence theorem: suppose that Ω ⊂ Rn is compact and has a piecewise
smooth boundary ∂Ω. If ~F is a C1(Ω) vector field (in a neighborhood of Ω), then∫

Ω

div ~F (~x) dV (~x) =

∫
∂Ω

~F · d ~A(~x).

B.7.11. Big-O and Little-o terminology: Let f : U ⊂ Rn → Rm with ~0 ∈ U . Then

1. f is Big-Oh of |~x|r, f(~x) = O(|~x|r) means that
|f(~x)|
|~x|r

is bounded near ~0 (i.e. f

must be “at least as small as” |~x|r near ~0), and

2. f is Little-o of |~x|r, f(~x) = o(|~x|r) means that lim
~x→~0

|f(~x)|
|~x|r

= 0 (i.e. f goes to zero

faster than |~x|r as ~x→ ~0).

B.7.12. (224) Taylor series: let f : Rn → R;

1. If f ∈ C2 near ~x0 then

f(~x) = f(~x0) +Df(~x0)(~x− ~x0) +
1

2
(~x− ~x0)TDf(~x0)(~x− ~x0) + o(|~x− ~x0|2).

2. If f ∈ C3 near ~x0 then

f(~x) = f(~x0) +Df(~x0)(~x− ~x0) +
1

2
(~x− ~x0)TDf(~x0)(~x− ~x0) +O(|~x− ~x0|2).

Index

active constraint, 27
AppendTo[], 59
Apply[], 73
argmin, 70
Assuming[], 41
augmented Lagrangian, 123

basic conjugate gradient algorithm, 83
Beale function, 89
Beltrami’s identity, 110, 111, 114, 125
Bε(~x), 12
βk, 85
BFGS algorithm, 81
Booth function, 90
Brachistochrone Problem, 110
Brachistochrone problem, 101, 102, 127

C, 113
Cases[], 39
Chop[], 113
conjugate gradient algorithm, 85, 87
conjugate gradient method, 79, 82
constraint function, 11
constraints, 11
convex function, 43
convex set, 43

D[], 74
:=, 59
DeleteCases[], 39
descent direction, 69, 79
descent sequence, 76
Df , 12
DFP algorithm, 79
differential, 12
divergence theorem, 108

Easom function, 92
efficiency, 63, 67

Element[], 39
=, 38
==, 38
Euler-Lagrange equation, 105, 124
Euler-Lagrange equation, second order, 126

feasible, 11
Fibonacci line search, 66
FindRoot[], 112
first order necessary condition, 58
fixed step size line search, 58
Fletcher–Reeves, 88
For[], 65
Function[], 60

geodesic, 101, 102, 110
global minimizer, 12
Golden ratio, 63
Golden Section line search, 61
gradient, 12
gradient methods, 69
Gramm-Schmidt, 83

hanging cable, 103, 122, 125
Hess2D, 73
Hessian, 58, 78, 87
Hessian matrix, 44
Hestenes–Steifel, 87
Hk, 78
Hump function, 90

If[], 59
inactive constraint, 27
inequality constraints, 27
initial bracket, 68
inner product, 83
integral constraints, 122
Integrate[], 130
integration by parts, 107

154

INDEX 155

J(~x ∗), 27

Karush-Kuhn-Tucker Theorem, 28

Lagrange multiplier, 24
Lagrange multiplier (m = 1), 18
Lagrange Multiplier Theorem, 19
Lagrange’s Theorem (m = 1), 18
Lagrangian, 104
line search, 58, 70
little o, 78
local minimizer, 11

maximization, 16, 28
maximum entropy, 128
minimal surface of revolution, 103
minimal surface of revolution, 101, 113
modified Newton’s method, 77
Module[], 59

N[], 60
natural boundary condition, 120
natural boundary condition, 119
Newton’s method, 76, 79
Newton’s method – line search, 60
notation, 12

objective function, 11
Outer[], 80
outer product, 80

Perm function, 91, 92
perpendicular to a surface, 16
++, 65
Polak–Ribiere, 87
positive definite, 44
positive semi-definite, 44
Power sum function, 93
pure function, 39, 59, 60

Q-conjugate, 82
Q-Gramm-Schmidt, 83
quadratic form, 44
quadratic function, 71, 78, 82, 83
quasi Newton’s method, 77
quasi Newton’s method, 82

rank one correction, 79

rank two correction, 79
Reals, 39

, 59
/., 113
Rosenbrock function, 93

search direction, 57
second order necessary condition, 58
second order sufficient condition, 58
Sequence, 73
Simplify[], 41
Solve[], 38
Sort[], 68
steepest descent, 70
step size, 57

Take[], 39
tangent space, 12
tangent space, 20, 51
Taylor’s approximation, 76
Taylor’s theorem, 45, 78
terminology, 11
test functions, 88

variation, 106
VFunction[], 73

While[], 59

	Introduction
	Examples
	Terminology
	Notation
	Mathematical Background

	Constrained Optimization
	Constrained Optimization with equality constraints
	Formulation
	A brief review of introductory multi-variable calculus and Lagrange multipliers
	The Lagrange Multiplier Theorem

	Constrained Optimization with inequality constraints
	Formulation
	The Karush-Kuhn-Tucker Theorem

	Convexity and Optimization Problems
	Convexity and optimization
	Other characterizations of convexity
	Sufficiency of KKT for convex problems

	Exercises

	Approximate Optimization
	Introduction
	Line Searches
	Fixed step size
	Newton's method
	Golden Section method.
	Fibonacci search method.

	Gradient Methods
	Introduction
	Steepest Descent Method
	Newton/Quasi-Newton Method

	Conjugate Gradient Methods
	Introduction
	The basic Conjugate Direction algorithm
	The conjugate gradient algorithm – quadratic functions
	The conjugate gradient algorithm – non-quadratic functions

	Test functions
	Exercises

	Variational Problems
	Introduction
	Formulation and the Euler-Lagrange equation
	Examples
	Natural Boundary Conditions
	Variational problems with integral constraints
	A Hanging Cable example.

	Exercises

	Optimal Control
	Introduction
	The Hamiltonian
	Pontryagin's Principle

	Constant coefficient, linear, ordinary differential equations
	Homogeneous ODE
	Second order, homogeneous
	Higher order, homogeneous

	Non-homogeneous ODE

	Mathematical Background
	Vector Space Notions
	Matrix Notions
	Inner Products and Norms
	Linear Transformations
	Quadratic Forms
	Notions from Geometry
	Notions of Calculus

	Index

