
Recommender Systems: Data Notes

Aaron Tuor

August 21, 2015

Contents

1 SNAP Amazon Reviews Data 1
1.1 Overview . 1
1.2 Data preparation . 2
1.3 Data Split . 7
1.4 Automated Processing . 7

1 SNAP Amazon Reviews Data

1.1 Overview

Attributes:

• Reviews: 34,686,770

• Users: 6,643,669

• Products: 2,441,053

• Users with > 50 Reviews: 56,772

• Product Categories: 28

• Timespan: Jun 1995 - Mar 2013

• Product description file in metadata

1

Review File Data Format

product/productId: B00006HAXW

product/title: Rock Rhythm and Doo Wop: Greatest Early Rock

product/price: unknown

review/userId: A1RSDE90N6RSZF

review/profileName: Joseph M. Kotow

review/helpfulness: 9/9

review/score: 5.0

review/time: 1042502400

review/summary: Pittsburgh - Home of the OLDIES

review/text: I have all of the doo wop DVD’s and this one is as good or
better than the 1st ones. Remember once these performers are gone, we’ll
never get to see them again. Rhino did an excellent job and if you like or
love doo wop and Rock n Roll you’ll LOVE this DVD !!

Product Description File Data Format

product/productId: B00006HAXW

product/description: Whether you’re hoping to obtain a raise from your
boss...(no new lines till end of description)

The original interest in this data set was for experimenting with models for cross-domain
collaborative filtering. People in the group have also used this data set for developing topic
and sentiment models using review text. Currently we are using the numerical review data
along with the associated product descriptions to develop matrix factorization based models
for addressing the cold start problem.

The data was originally obtained from:

https://snap.stanford.edu/data/web-Amazon.html

There is a newer incarnation of this dataset here:

http://jmcauley.ucsd.edu/data/amazon/

1.2 Data preparation

The models we are interested depend on two matrices, a user-item utility matrix R, and a
document term occurrence matrix, D.

2

https://snap.stanford.edu/data/web-Amazon.html
http://jmcauley.ucsd.edu/data/amazon/

The entries in D are such that Dij = the number of times word i occurs in the description
of item j.

The entries in R are such that Rij = user i’s review (a score between 1 and 5) of item j.

The first step in data preparation was to put the data in a tab delimited sparse matrix
format that is friendly with matlab.

Issues

1. There is a user labeled ”unknown” which must be removed from the dataset. (Amazon
used to allow unregistered users to rate and review items, all of which got lumped into
the label ”unknown”.) This unknown user has on the order of a million ratings in the
data set. There are other users which have on the order of 10,000 ratings in the data
set. These high numbers of ratings are due to the fact that Amazon has some reviewers
that receive items from companies in order to review them. The most prolific of these
semi-professional reviewers have around 30,000 reviews. We thought about removing
these reviewers from the dataset but I am averse to doing so unless we have some
principled way (something that doesn’t seem arbitrary) of determining the cutoff.

2. User and Item ID’s must be mapped to integers between 1 and num users and 1 and
numitems respectively

3. We are only concerned with ratings for items which have an associated product de-
scription in the metadata. So, some ratings must be filtered out when there is no
product description in the metadata.

4. In order to construct the document term occurrence matrix we have to do some text
processing.

i Normalize the text (Remove punctuation).

ii Create a dictionary: Some words are too uncommon to have meaningful correlations
with other words (uncommon mispellings, random integers, etc.). A dictionary
needs to be created that contains the words we wish to count from the product
descriptions.

iii Count words and print files.

For the most part these issues were unanticipated. As a result they were dealt with one by
one, as they were discovered and so the particular solutions outlined below (which work) are
open to improvement.

Steps: Below are the steps for processing Amazon Movies Review data. The scripts used,
unless otherwise mentioned are at:

/home/hutch_research/projects/recommender_systems/aaron_copy/scripts/data_processing/

3

/home/hutch_research/projects/recommender_systems/aaron_copy/scripts/data_processing/

Processing Reviews Data

1. Use AmazonSparseMaker.py to generate a tab delimited sparse format file from Movies_-

TV.txt (review file data format). The usage is:

python ...path.../AmazonSparseMaker.py <reviewfilepath> <sparsefilepath>
<filename>

where:

<reviewfilepath> is the location of Movies_TV.txt

<sparsefilepath> is the location where you want the sparse data file
which will be created named <filename>.

This script automatically filters out the unknown user. The script will create a folder
if one doesn’t already exist at <sparsefilepath>. A readme is created which gives
the stats on the reviews.
A list of items contained in the review file is also created at <sparsefilepath> for
use in the next step.

2. Use AmazonProductDescListMaker.py to generate a file containing product descrip-
tions for products contained in Movies_TV.txt. The usage is:

python ...path.../AmazonProductDescListMaker.py <readfilepath> <writefilepath>
<namestub>

where:

<readfilepath> is the path to descriptions.txt including filename.
(for us /home/hutch_research/data/amazon_reviews/descriptions.
txt).

<writefilepath> is the path to Movies_TV.description file you wish to
create (without filename).

<namestub> is the name of the .sparse file minus the file extension (in this
case Movies_TV) created in step 1.

3. Use filterSparse.py To remove entries for items not found in descriptions.txt

from the sparse format file created in step 1. Usage:

python ...path.../filterSparse.py <path> <sparsefilename> <itemDescriptionFile>

where:

<itemDescriptionFile> is the name of the .descriptions file made in step
2

<sparsefilename> is the name of the .sparse file made in step 1

4

AmazonSparseMaker.py
AmazonProductDescListMaker.py
Movies_TV.txt
/home/hutch_research/data/amazon_reviews/descriptions.txt
/home/hutch_research/data/amazon_reviews/descriptions.txt

<path> is the path where the above files are located

4. Use sparsemap.py to create .sparse file where Amazon IDs have been mapped to
integer IDs. Usage:

python ...path.../sparsemap.py <path> <filename>

where:

<filename> is the name of the filtered .sparse file made in step 2

<path> is the path where the above file is located

Three files will be created at <path>. A .sparse file (named with _mapped infixed
between the namestub and extension of the original file), a .txt file recording the user
ID mappings and a .txt file recording the item ID mappings.

Processing Product Description Data

1. See step 2 in Processing Reviews Data above

2. Use descriptionMap.py to map amazon IDs in Movies_TV.descriptions file to cor-
responding integer IDs. Mappings are found in Watches_filtered_itemmap.txt. Us-
age:

python ...path.../descriptionMap.py <path> <descriptionFilename> <itemMapFilename>

where:

<descriptionFilename> is the name of the product description file you
wish to map Ids for.

<itemMapFilename> is the name of the file containing the mappings.

<path> is the location of the above files.

A new description file with integer IDs replacing amazon IDs will be created at <path>
using the following naming convention. _mapped will be infixed between the namestub
and file extension of the original file name. For instance if Movies_TV.descriptions
is the name of the original file then Movies_TV_norm.descriptions is the name of the
file containing the normalized text.

3. Use normalize.py to remove punctuation that is not important to the semantics of
individual word tokens. Usage:

python ...path.../normalize.py <infile>

where:

<infile> is the name of the text file to be normalized (in this case Movies_-
TV_mapped.descriptions).

5

A new file of the normalized text will be created automatically by the following conven-
tion. _norm will be infixed between the namestub and file extension of the original file
name. For instance if Movies_TV_mapped.descriptions is the name of the original
file then Movies_TV_mapped_norm.descriptions is the name of the file containing the
normalized text.

4. Use generateVocab.pl to create a dictionary of words contained in .descriptions file.
We don’t want the item IDs contained in our dictionary so the first step is to remove
the first token from each line of the .descriptions file. This can be accomplished using
the Unix terminal command below:

cut -f2- -d" " <descriptionFile> > <cutDescriptionFile>

where:

<descriptionFile> is the name of the .description file we wish to remove
item IDs from.

<cutdescriptionFile> is the name of the file were the descriptions minus
the item IDs will be written to.

Next you need to type in the terminal:

export PERL5LIB=$PERL5LIB:/home/hutch_research/lib

I’m not sure what this does exactly but I think it ensures that the script can access the
appropriate libraries. Now we can use generateVocab.pl located at /home/hutch_-

research/bin/ on the cut .description file. Usage:

/home/hutch_research/bin/generateVocab.pl -c <integer> <descriptions> > <dictionary>

where:

<integer> is the number of occurrences a word must have to be in the
dictionary.

<descriptions> is the name of the file the dictionary is being compiled
from.

<dictionary> is the name of the resulting dictionary file.

5. Use generateTermDoc.py to create a .sparse file of term/Doc counts for each product.
Format: <term> <doc> <count>. Usage:

python ...path.../generateTermDoc.py <path> <dictionaryfilename> <descriptionfilename>

<termDocfilename>

where:

<dictionaryfilename> is the name of the dictionary file created in step 4.

6

<descriptionfilename> is the name of the normalized .description file cre-
ated in step 3.

<termDocfilename> is the name of the .sparse file being created.

<path> is the location of the above files.

1.3 Automated Processing

The script which automates the above steps is processAmazon.py. Usage:

python ...path.../processAmazon.py <reviewfilename> <datadirectory>

where:

1.4 Data Split

The data is split up in a particular way in order to train and test for cold start scenarios. Once
the data is prepared in the .sparse format the ratings observations are split as follows:

userdevcold ≈ 5 percent of ratings where entire rows of user ratings are removed from
training data.
usertestcold ≈ 5 percent of ratings where entire rows of user ratings are removed from
training data.
itemdevcold ≈ 5 percent of ratings where entire columns of item ratings are removed from
training data.
itemtestcold ≈ 5 percent of ratings where entire columns of item ratings are removed from
training data.
bothdevcold ≈ .5 percent of ratings
bothtestcold ≈ .5 percent of ratings
dev ≈ 5 percent of remaining ratings after removal of devcold and testcold columns.
test ≈ 5 percent of remaining ratings after removal of devcold, testcold, and dev.
train ≈ the remaining 80 percent of ratings.

This split is accomplished by running the matlab script coldsplitword.m:

Usage:

matlab (enter matlab environment)
coldsplitword(fullratings.sparse, termDoc.sparse, newfile.mat);

where
fullRatings.sparse is the .sparse file created in the previous steps for ratings

termDoc.sparse is the .sparse file created in the previous steps for words.

newfile.mat is the name of the .mat file with the created matrices.

7

	SNAP Amazon Reviews Data
	Overview
	Data preparation
	Data Split
	Automated Processing

