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Let m and n be positive integers. Let A be an arbitrary n×m matrix. There are 12 vector
spaces related to the matrix A that are of interest. Those are

ColA ⊆ Rn RowA ⊆ Rm NulA ⊆ Rm

(ColA)⊥ ⊆ Rn (RowA)⊥ ⊆ Rm (NulA)⊥ ⊆ Rm

Col(AT ) ⊆ Rm Row(AT ) ⊆ Rn Nul(AT ) ⊆ Rn(
Col(AT )

)⊥ ⊆ Rm
(
Row(AT )

)⊥ ⊆ Rn
(
Nul(AT )

)⊥ ⊆ Rn

Let the matrices A and AT contain entries as follows:

A =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

...
...

a1n a2n · · · amn

AT =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


If no distinction is observed between the vectors and column vectors, two useful identities
between the listed vector spaces can be established from the definition of the transpose of a
matrix.

ColA = Row(AT )

Col(AT ) = RowA

Substituting these identities into our original list and eliminating copies gives the new
list:

ColA = RowAT NulA

(ColA)⊥ = (RowAT )⊥ (NulA)⊥

Col(AT ) = Row(A) Nul(AT )(
Col(AT )

)⊥
=
(
Row(A)

)⊥ (
Nul(AT )

)⊥
1



Let the column vectors of A be {~a1, ~a2, ..., ~am}. Then a vector ~x is in (ColA)⊥ if and only if
~x · ~aj = 0 for 1 ≤ j ≤ m. Rewriting this as a system of equations we have:

a11x1 + a12x2... + a1nxn = 0

a21x1 + a22x2... + a1nxn = 0

.

.

.

an1x1 + an2x2... + amnxn = 0

Rewriting the system as a matrix equation we have:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn



x1

x2

...
xn

 = ~0⇔ AT~x = ~0

So, any vector ~x is in (ColA)⊥ if and only if ~x ∈ Nul(AT ). Since no special assumptions
were made about A we can conclude that:

(ColA)⊥ = Nul(AT )

(ColAT )⊥ = Nul(A)

Also notice by these identities that:

(NulAT )⊥ = ((ColA)⊥)⊥ = ColA

(NulA)⊥ = ((ColAT )⊥)⊥ = ColAT

Substituting these identities into our shortened list and eliminating identical entries we
have:

ColA = RowAT = (NulAT )⊥

NulAT = (ColA)⊥ = (RowAT )⊥

Col(AT ) = Row(A) = (NulA)⊥

NulA =
(
Col(AT )

)⊥
=
(
Row(A)

)⊥
By inspection one finds that for the matrix Q =

( 1 1 0
1 1 0
1 1 0

)
, the four vector spaces on our list

are in fact distinct. So we conclude that for some matrix A there can be as many as four
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distinct subspaces of those on the original list and there are at most four distinct subspaces
contained on the original list.

When m = n it is possible that A = AT as in the case of In. In these cases ColA = Col(AT ),
and NulAT = NulA, reducing the number of distinct vector spaces from the list to 2. So
we conclude that there can be as few as 2 distinct vector spaces contained on the original
list.

We now prove by contradiction that for a vector space W in Rn, W 6= W⊥.

Proof. Suppose there exists a vector space W in Rn such that W = W⊥. Then every vector
in W is orthogonal to itself. By the definition of orthogonality and a property of the dot
product (~u ·~u = ~0 if and only if ~u = 0), the only vector orthogonal to itself is ~0. This implies
W = ~0. Since every vector in Rn is orthogonal to ~0, we have W⊥ = Rn. By our assumption
this gives Rn = ~0 which is clearly not true. So we conclude by way of contradiction that for
any vector space in Rn, W 6= W⊥.

Since the original list contains the orthogonal complement of each vector space on the list,
we conclude that there are at least two distinct vector spaces on the list.

2

Let n ∈ N. In this problem below we consider the reverse identity matrix, Jn.

J1 =
[
1
]
, J2 =

[
0 1
1 0

]
, J3 =

0 0 1
0 1 0
1 0 0

 , · · · , Jn =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0


Let 0n be an n x n matrix with all zeros for entries. Then for even n, Jn can be represented

in the form of a block matrix as follows: Jn =
( 0n

2
Jn

2
Jn

2
0n
2

)
. Let Pn =

( In
2

Jn
2

Jn
2

(−1)In
2

)
and Dn =( In

2
0n
2

0n
2

(−1)In
2

)
. Notice that JnJn = In. So we have the following results:

(1) JnPn =

[
0n

2
Jn

2

Jn
2

0n
2

] [
In

2
Jn

2

Jn
2

(−1)In
2

]
=

[
Jn

2
Jn

2
Jn

2
(−1)In

2

Jn
2
In

2
Jn

2
Jn

2

]
=

[
In

2
(−1)Jn

2

Jn
2

In
2

]
(2) PnDn =

[
In

2
Jn

2

Jn
2

(−1)In
2

] [
In

2
0n

2

0n
2

(−1)In
2

]
=

[
In

2
In

2
Jn

2
(−1)In

2

In
2
Jn

2
(−1)In

2
(−1)In

2

]
=

[
In

2
(−1)Jn

2

Jn
2

In
2

]
By (1) and (2) we have JnPn = PnDn. Since Dn is diagonal we now show that Pn(1

2
Pn) = In,

to prove that for even n, Jn is diagonalizable.
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1

2
PnPn =

1

2

[
In

2
Jn

2

Jn
2

(−1)In
2

] [
In

2
Jn

2

Jn
2

(−1)In
2

]
=

1

2

[
(I2n

2
+ J2

n
2
) (In

2
Jn

2
− In

2
Jn

2
)

(J2
n
2
− I2n

2
) (J2

n
2

+ I2n
2
)

]
= In

For a non-square n×m matrix containing all zeros as entries we introduce the notation 0n×m.
For square matrices containing all zeros as entries we maintain our earlier convention. This
allows us to represent Jn where n is odd and n > 1, as the block matrix displayed below.
Furthermore, let the matrices Qn, Vn be as follows:

Jn =

 0n−1
2

0n−1
2
×1 Jn−1

2

01×n−1
2

1 01×n−1
2

Jn−1
2

0n−1
2
×1 0n−1

2

 , Qn =

 In−1
2

0n−1
2
×1 Jn−1

2

01×n−1
2

1 01×n−1
2

Jn−1
2

0n−1
2
×1 (−1)In−1

2

Vn =

 In−1
2

0n−1
2
×1 0n−1

2

01×n−1
2

1 01×n−1
2

0n−1
2

0n−1
2
×1 (−1)In−1

2


Since Jn, Qn, and Vn are conformable for block multiplication, for the sake of space we
shall ignore subscripts defining block size in demonstration of the matrix products we are
interested in. We have:

(1) JnQn =

0 0 J
0 1 0
J 0 0

I 0 J
0 1 0
J 0 −I

 =

J2 0 −IJ
0 1 0
JI 0 J2

 =

I 0 −J
0 1 0
J 0 I


(2) QnVn =

I 0 J
0 1 0
J 0 −I

I 0 0
0 1 0
0 0 −I

 =

I 0 J(−I)
0 1 0
J 0 −I(−I)

 =

I 0 −J
0 1 0
J 0 I


By (1) and (2) we have JnQn = QnVn. Since Vn is a diagonal matrix we now demonstrate
that Qn is invertible to complete the proof that Jn is diagonalizable for odd n (n = 1 is
trivial since J1 is a diagonal matrix). Let

Zn =
1

2

 In−1
2

0n−1
2
×1 Jn−1

2

01×n−1
2

2 01×n−1
2

Jn−1
2

0n−1
2
×1 (−1)In−1

2


Then:

QnZn =

I 0 J
0 1 0
J 0 −I

 1

2

I 0 J
0 2 0
J 0 −I

 =
1

2

 I2 + J2 0 IJ + J(−I)
0 2 0

JI + (−IJ) 0 J2 + (−I)(−I)

 = In

Since Jn is diagonalizable for all even n and all odd n, Jn is diagonalizable for all n.
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In this problem we consider three kinds of n× n matrices:

Ln =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 , Un =


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

 , Mn =


n n− 1 · · · 2 1

n− 1 n− 1 · · · 2 1
...

...
. . .

...
...

2 2 · · · 2 1
1 1 · · · 1 1

 .

1. There is a simple relationship among matrices Ln, Un and Mn. By matrix multiplication
we calculate (1) UnLn = Mn.

1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1




1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 =


n n− 1 · · · 2 1

n− 1 n− 1 · · · 2 1
...

...
. . .

...
...

2 2 · · · 2 1
1 1 · · · 1 1


2. Since Ln and Un are triangular matrices it is easy to calculate their determinants.

det(Ln) = 1 · 1 · ..... · 1 = 1

det(Un) = 1 · 1 · ..... · 1 = 1

By (1) we have det(Mn) = det(UnLn) = det(Un)det(Ln) = 1.

3.

U−1n =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . . −1
0 0 · · · 0 1


, L−1n =



1 0 0 · · · 0

−1 1 0
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . . 0
0 0 · · · −1 1



M−1
n = (UnLn)−1 = L−1n U−1n =



1 0 0 · · · 0

−1 1 0
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . . 0
0 0 · · · −1 1





1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . . −1
0 0 · · · 0 1


=



1 −1 0 · · · 0

−1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . . −1
0 0 · · · −1 2


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4

Prove that Col(AT ) = Col(ATA).

Proof. First we show that Nul(A) = NulATA. For ~x ∈ Nul(A), A~x = ~0. Right multiplying
both sides by AT gives ATA~x = ~0. So, (1) if ~x ∈ Nul(A) then ~x ∈ Nul(ATA).

For ~x ∈ Nul(ATA), ATA~x = ~0. We have:

ATA~x = ~0⇔ ~xTATA~x = ~0⇔ (A~x)TA~x = ~0⇔ A~x·A~x = ~0⇔‖ A~x ‖2= ~0⇔‖ A~x ‖= ~0⇔ A~x = ~0

So, (2) if ~x ∈ Nul(ATA) then ~x ∈ Nul(A). By (1) and (2) we have (3) Nul(ATA) = Nul(A).
From (3) and the identities established in section 1 we have the following result:

Col(AT ) = (Nul(A))⊥ = (Nul(ATA))⊥ = Col(ATA)T = Col(ATA).

By the above result, the fact ATA = (ATA)T , and our previously established identities we
now have these useful identities:

Col(AT ) = Row(A) = (NulA)⊥ = Col(ATA) = Row(ATA).
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