Math 304: Assignment 1

Aaron Tuor

Dec. 1, 2012

1

Let m and n be positive integers. Let A be an arbitrary $n \times m$ matrix. There are 12 vector spaces related to the matrix A that are of interest. Those are

$\operatorname{Col} A \subseteq \mathbb{R}^n$	$\operatorname{Row} A \subseteq \mathbb{R}^m$	$\operatorname{Nul} A \subseteq \mathbb{R}^m$
$(\operatorname{Col} A)^{\perp} \subseteq \mathbb{R}^n$	$(\operatorname{Row} A)^{\perp} \subseteq \mathbb{R}^m$	$(\operatorname{Nul} A)^{\perp} \subseteq \mathbb{R}^m$
$\operatorname{Col}(A^T) \subseteq \mathbb{R}^m$	$\operatorname{Row}(A^T) \subseteq \mathbb{R}^n$	$\operatorname{Nul}(A^T) \subseteq \mathbb{R}^n$
$\left(\operatorname{Col}(A^T)\right)^{\perp} \subseteq \mathbb{R}^m$	$\left(\operatorname{Row}(A^T)\right)^{\perp} \subseteq \mathbb{R}^n$	$\left(\operatorname{Nul}(A^T)\right)^{\perp} \subseteq \mathbb{R}^n$

Let the matrices A and A^T contain entries as follows:

$$A = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} A^{T} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

If no distinction is observed between the vectors and column vectors, two useful identities between the listed vector spaces can be established from the definition of the transpose of a matrix.

$$\operatorname{Col} A = \operatorname{Row}(A^T)$$

 $\operatorname{Col}(A^T) = \operatorname{Row} A$

Substituting these identities into our original list and eliminating copies gives the new list:

$$Col A = Row A^{T} Nul A$$
$$(Col A)^{\perp} = (Row A^{T})^{\perp} (Nul A)^{\perp}$$
$$Col(A^{T}) = Row(A) Nul(A^{T})$$
$$(Col(A^{T}))^{\perp} = (Row(A))^{\perp} (Nul(A^{T}))^{\perp}$$

Let the column vectors of A be $\{\vec{a_1}, \vec{a_2}, ..., \vec{a_m}\}$. Then a vector \vec{x} is in $(\operatorname{Col} A)^{\perp}$ if and only if $\vec{x} \cdot \vec{a_j} = 0$ for $1 \leq j \leq m$. Rewriting this as a system of equations we have:

```
a_{11}x_1 + a_{12}x_2... + a_{1n}x_n = 0a_{21}x_1 + a_{22}x_2... + a_{1n}x_n = 0.
```

 $a_{n1}x_1 + a_{n2}x_2... + a_{mn}x_n = 0$

Rewriting the system as a matrix equation we have:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \vec{0} \Leftrightarrow A^T \vec{x} = \vec{0}$$

So, any vector \vec{x} is in $(\operatorname{Col} A)^{\perp}$ if and only if $\vec{x} \in \operatorname{Nul}(A^T)$. Since no special assumptions were made about A we can conclude that:

$$(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^T)$$

 $(\operatorname{Col} A^T)^{\perp} = \operatorname{Nul}(A)$

Also notice by these identities that:

$$(\operatorname{Nul} A^T)^{\perp} = ((\operatorname{Col} A)^{\perp})^{\perp} = \operatorname{Col} A$$

 $(\operatorname{Nul} A)^{\perp} = ((\operatorname{Col} A^T)^{\perp})^{\perp} = \operatorname{Col} A^T$

Substituting these identities into our shortened list and eliminating identical entries we have:

$$\operatorname{Col} A = \operatorname{Row} A^{T} = (\operatorname{Nul} A^{T})^{\perp}$$

$$\operatorname{Nul} A^{T} = (\operatorname{Col} A)^{\perp} = (\operatorname{Row} A^{T})^{\perp}$$

$$\operatorname{Col}(A^{T}) = \operatorname{Row}(A) = (\operatorname{Nul} A)^{\perp}$$

$$\operatorname{Nul} A = (\operatorname{Col}(A^{T}))^{\perp} = (\operatorname{Row}(A))^{\perp}$$

By inspection one finds that for the matrix $Q = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$, the four vector spaces on our list are in fact distinct. So we conclude that for some matrix A there can be as many as four

distinct subspaces of those on the original list and there are at most four distinct subspaces contained on the original list.

When m = n it is possible that $A = A^T$ as in the case of I_n . In these cases $\operatorname{Col} A = \operatorname{Col}(A^T)$, and $\operatorname{Nul} A^T = \operatorname{Nul} A$, reducing the number of distinct vector spaces from the list to 2. So we conclude that there can be as few as 2 distinct vector spaces contained on the original list.

We now prove by contradiction that for a vector space W in \mathbb{R}^n , $W \neq W^{\perp}$.

Proof. Suppose there exists a vector space W in \mathbb{R}^n such that $W = W^{\perp}$. Then every vector in W is orthogonal to itself. By the definition of orthogonality and a property of the dot product $(\vec{u} \cdot \vec{u} = \vec{0} \text{ if and only if } \vec{u} = 0)$, the only vector orthogonal to itself is $\vec{0}$. This implies $W = \vec{0}$. Since every vector in \mathbb{R}^n is orthogonal to $\vec{0}$, we have $W^{\perp} = \mathbb{R}^n$. By our assumption this gives $\mathbb{R}^n = \vec{0}$ which is clearly not true. So we conclude by way of contradiction that for any vector space in \mathbb{R}^n , $W \neq W^{\perp}$.

Since the original list contains the orthogonal complement of each vector space on the list, we conclude that there are at least two distinct vector spaces on the list.

$\mathbf{2}$

Let $n \in \mathbb{N}$. In this problem below we consider the reverse identity matrix, J_n .

$$J_{1} = \begin{bmatrix} 1 \end{bmatrix}, \ J_{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ J_{3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \cdots, \ J_{n} = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{bmatrix}$$

Let 0_n be an $n \ge n$ matrix with all zeros for entries. Then for even n, J_n can be represented in the form of a block matrix as follows: $J_n = \begin{pmatrix} 0 & n & J_n \\ J_n & 0 & n \\ J_n & 0 & n \end{pmatrix}$. Let $P_n = \begin{pmatrix} I_n & J_n \\ J_n & (-1)I_n \\ J_n & (-1)I_n \end{pmatrix}$ and $D_n = \begin{pmatrix} I_n & 0 & n \\ 0 & n & (-1)I_n \\ 0 & n & (-1)I_n \end{pmatrix}$. Notice that $J_n J_n = I_n$. So we have the following results:

$$(1) \quad J_n P_n = \begin{bmatrix} 0_{\frac{n}{2}} & J_{\frac{n}{2}} \\ J_{\frac{n}{2}} & 0_{\frac{n}{2}} \end{bmatrix} \begin{bmatrix} I_{\frac{n}{2}} & J_{\frac{n}{2}} \\ J_{\frac{n}{2}} & (-1)I_{\frac{n}{2}} \end{bmatrix} = \begin{bmatrix} J_{\frac{n}{2}}J_{\frac{n}{2}} & J_{\frac{n}{2}}(-1)I_{\frac{n}{2}} \\ J_{\frac{n}{2}}I_{\frac{n}{2}} & J_{\frac{n}{2}}J_{\frac{n}{2}} \end{bmatrix} = \begin{bmatrix} I_{\frac{n}{2}} & (-1)J_{\frac{n}{2}} \\ J_{\frac{n}{2}} & I_{\frac{n}{2}} \end{bmatrix}$$

$$(2) \quad P_n D_n = \begin{bmatrix} I_{\frac{n}{2}} & J_{\frac{n}{2}} \\ J_{\frac{n}{2}} & (-1)I_{\frac{n}{2}} \end{bmatrix} \begin{bmatrix} I_{\frac{n}{2}} & 0_{\frac{n}{2}} \\ 0_{\frac{n}{2}} & (-1)I_{\frac{n}{2}} \end{bmatrix} = \begin{bmatrix} I_{\frac{n}{2}}I_{\frac{n}{2}} & J_{\frac{n}{2}}(-1)I_{\frac{n}{2}} \\ I_{\frac{n}{2}}I_{\frac{n}{2}} & (-1)I_{\frac{n}{2}} \end{bmatrix} = \begin{bmatrix} I_{\frac{n}{2}}I_{\frac{n}{2}} & J_{\frac{n}{2}}(-1)I_{\frac{n}{2}} \\ I_{\frac{n}{2}}I_{\frac{n}{2}} & (-1)I_{\frac{n}{2}} \end{bmatrix} = \begin{bmatrix} I_{\frac{n}{2}} & I_{\frac{n}{2}} \\ J_{\frac{n}{2}} & I_{\frac{n}{2}} \end{bmatrix}$$

By (1) and (2) we have $J_n P_n = P_n D_n$. Since D_n is diagonal we now show that $P_n(\frac{1}{2}P_n) = I_n$, to prove that for even n, J_n is diagonalizable.

$$\frac{1}{2}P_nP_n = \frac{1}{2} \begin{bmatrix} I_{\frac{n}{2}} & J_{\frac{n}{2}} \\ J_{\frac{n}{2}} & (-1)I_{\frac{n}{2}} \end{bmatrix} \begin{bmatrix} I_{\frac{n}{2}} & J_{\frac{n}{2}} \\ J_{\frac{n}{2}} & (-1)I_{\frac{n}{2}} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} (I_{\frac{n}{2}}^2 + J_{\frac{n}{2}}^2) & (I_{\frac{n}{2}}J_{\frac{n}{2}} - I_{\frac{n}{2}}J_{\frac{n}{2}}) \\ (J_{\frac{n}{2}}^2 - I_{\frac{n}{2}}^2) & (J_{\frac{n}{2}}^2 + I_{\frac{n}{2}}^2) \end{bmatrix} = I_n$$

For a non-square $n \times m$ matrix containing all zeros as entries we introduce the notation $0_{n \times m}$. For square matrices containing all zeros as entries we maintain our earlier convention. This allows us to represent J_n where n is odd and n > 1, as the block matrix displayed below. Furthermore, let the matrices Q_n, V_n be as follows:

$$J_{n} = \begin{bmatrix} 0_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & J_{\frac{n-1}{2}} \\ 0_{1 \times \frac{n-1}{2}} & 1 & 0_{1 \times \frac{n-1}{2}} \\ J_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & 0_{\frac{n-1}{2}} \end{bmatrix}, Q_{n} = \begin{bmatrix} I_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & J_{\frac{n-1}{2}} \\ 0_{1 \times \frac{n-1}{2}} & 1 & 0_{1 \times \frac{n-1}{2}} \\ J_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & (-1)I_{\frac{n-1}{2}} \end{bmatrix} V_{n} = \begin{bmatrix} I_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & 0_{\frac{n-1}{2}} \\ 0_{1 \times \frac{n-1}{2}} & 1 & 0_{1 \times \frac{n-1}{2}} \\ 0_{\frac{n-1}{2} \times 1} & 0_{\frac{n-1}{2} \times 1} & (-1)I_{\frac{n-1}{2}} \end{bmatrix}$$

Since J_n , Q_n , and V_n are conformable for block multiplication, for the sake of space we shall ignore subscripts defining block size in demonstration of the matrix products we are interested in. We have:

$$(1) \quad J_n Q_n = \begin{bmatrix} 0 & 0 & J \\ 0 & 1 & 0 \\ J & 0 & 0 \end{bmatrix} \begin{bmatrix} I & 0 & J \\ 0 & 1 & 0 \\ J & 0 & -I \end{bmatrix} = \begin{bmatrix} J^2 & 0 & -IJ \\ 0 & 1 & 0 \\ JI & 0 & J^2 \end{bmatrix} = \begin{bmatrix} I & 0 & -J \\ 0 & 1 & 0 \\ J & 0 & I \end{bmatrix}$$
$$(2) \quad Q_n V_n = \begin{bmatrix} I & 0 & J \\ 0 & 1 & 0 \\ J & 0 & -I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -I \end{bmatrix} = \begin{bmatrix} I & 0 & J(-I) \\ 0 & 1 & 0 \\ J & 0 & -I(-I) \end{bmatrix} = \begin{bmatrix} I & 0 & -J \\ 0 & 1 & 0 \\ J & 0 & I \end{bmatrix}$$

By (1) and (2) we have $J_nQ_n = Q_nV_n$. Since V_n is a diagonal matrix we now demonstrate that Q_n is invertible to complete the proof that J_n is diagonalizable for odd n (n = 1 is trivial since J_1 is a diagonal matrix). Let

$$Z_n = \frac{1}{2} \begin{bmatrix} I_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & J_{\frac{n-1}{2}} \\ 0_{1 \times \frac{n-1}{2}} & 2 & 0_{1 \times \frac{n-1}{2}} \\ J_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & (-1)I_{\frac{n-1}{2}} \end{bmatrix}$$

Then:

$$Q_n Z_n = \begin{bmatrix} I & 0 & J \\ 0 & 1 & 0 \\ J & 0 & -I \end{bmatrix} \frac{1}{2} \begin{bmatrix} I & 0 & J \\ 0 & 2 & 0 \\ J & 0 & -I \end{bmatrix} = \frac{1}{2} \begin{bmatrix} I^2 + J^2 & 0 & IJ + J(-I) \\ 0 & 2 & 0 \\ JI + (-IJ) & 0 & J^2 + (-I)(-I) \end{bmatrix} = I_n$$

Since J_n is diagonalizable for all even n and all odd n, J_n is diagonalizable for all n.

In this problem we consider three kinds of $n \times n$ matrices:

$$L_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}, \quad U_n = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}, \quad M_n = \begin{bmatrix} n & n-1 & \cdots & 2 & 1 \\ n-1 & n-1 & \cdots & 2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & \cdots & 2 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}.$$

1. There is a simple relationship among matrices L_n , U_n and M_n . By matrix multiplication we calculate (1) $U_n L_n = Mn$.

Г1	1		17	Г1	Ο		∩٦		n	n-1	•••	2	1
	1				1				n-1	n-1	• • •	2	1
10	1	• • •	1	11	T	• • •	U						
:	:	۰.	:	:	:	۰.	:	=	:	:	••	:	:
	•	•	· 1		• 1	•	•		2	2	• • •	2	1
Lo	0	•••	ŢŢ	Lī	T	•••	Ţ		1	1	• • •	1	1

2. Since L_n and U_n are triangular matrices it is easy to calculate their determinants.

$$det(L_n) = 1 \cdot 1 \cdot \dots \cdot 1 = 1$$
$$det(U_n) = 1 \cdot 1 \cdot \dots \cdot 1 = 1$$
By (1) we have $det(M_n) = det(U_nL_n) = det(U_n)det(L_n) = 1.$ 3.

$$U_n^{-1} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, \quad L_n^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

$$M_n^{-1} = (U_n L_n)^{-1} = L_n^{-1} U_n^{-1} =$$

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

Prove that $\operatorname{Col}(A^T) = \operatorname{Col}(A^T A)$.

Proof. First we show that $\operatorname{Nul}(A) = \operatorname{Nul}A^T A$. For $\vec{x} \in \operatorname{Nul}(A)$, $A\vec{x} = \vec{0}$. Right multiplying both sides by A^T gives $A^T A \vec{x} = \vec{0}$. So, (1) if $\vec{x} \in \operatorname{Nul}(A)$ then $\vec{x} \in \operatorname{Nul}(A^T A)$.

For $\vec{x} \in \text{Nul}(A^T A)$, $A^T A \vec{x} = \vec{0}$. We have:

$$A^{T}A\vec{x} = \vec{0} \Leftrightarrow \vec{x}^{T}A^{T}A\vec{x} = \vec{0} \Leftrightarrow (A\vec{x})^{T}A\vec{x} = \vec{0} \Leftrightarrow A\vec{x} \cdot A\vec{x} = \vec{0} \Leftrightarrow ||A\vec{x}||^{2} = \vec{0} \Leftrightarrow ||A\vec{x}|| = \vec{0} \Leftrightarrow A\vec{x} = \vec{0}$$

So, (2) if $\vec{x} \in \text{Nul}(A^T A)$ then $\vec{x} \in \text{Nul}(A)$. By (1) and (2) we have (3) $\text{Nul}(A^T A) = \text{Nul}(A)$. From (3) and the identities established in section 1 we have the following result:

$$\operatorname{Col}(A^T) = (\operatorname{Nul}(A))^{\perp} = (\operatorname{Nul}(A^T A))^{\perp} = \operatorname{Col}(A^T A)^T = \operatorname{Col}(A^T A).$$

By the above result, the fact $A^T A = (A^T A)^T$, and our previously established identities we now have these useful identities:

$$\operatorname{Col}(A^T) = \operatorname{Row}(A) = (\operatorname{Nul} A)^{\perp} = \operatorname{Col}(A^T A) = \operatorname{Row}(A^T A).$$