# Math 304: Assignment 1 

Aaron Tuor

Dec. 1, 2012

Let $m$ and $n$ be positive integers. Let $A$ be an arbitrary $n \times m$ matrix. There are 12 vector spaces related to the matrix $A$ that are of interest. Those are

$$
\begin{array}{lll}
\operatorname{Col} A \subseteq \mathbb{R}^{n} & \operatorname{Row} A \subseteq \mathbb{R}^{m} & \operatorname{Nul} A \subseteq \mathbb{R}^{m} \\
(\operatorname{Col} A)^{\perp} \subseteq \mathbb{R}^{n} & (\operatorname{Row} A)^{\perp} \subseteq \mathbb{R}^{m} & (\operatorname{Nul} A)^{\perp} \subseteq \mathbb{R}^{m} \\
\operatorname{Col}\left(A^{T}\right) \subseteq \mathbb{R}^{m} & \operatorname{Row}\left(A^{T}\right) \subseteq \mathbb{R}^{n} & \operatorname{Nul}\left(A^{T}\right) \subseteq \mathbb{R}^{n} \\
\left(\operatorname{Col}\left(A^{T}\right)\right)^{\perp} \subseteq \mathbb{R}^{m} & \left(\operatorname{Row}\left(A^{T}\right)\right)^{\perp} \subseteq \mathbb{R}^{n} & \left(\operatorname{Nul}\left(A^{T}\right)\right)^{\perp} \subseteq \mathbb{R}^{n}
\end{array}
$$

Let the matrices $A$ and $A^{T}$ contain entries as follows:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right] A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

If no distinction is observed between the vectors and column vectors, two useful identities between the listed vector spaces can be established from the definition of the transpose of a matrix.

$$
\begin{aligned}
& \operatorname{Col} A=\operatorname{Row}\left(A^{T}\right) \\
& \operatorname{Col}\left(A^{T}\right)=\operatorname{Row} A
\end{aligned}
$$

Substituting these identities into our original list and eliminating copies gives the new list:

$$
\begin{array}{ll}
\operatorname{Col} A=\operatorname{Row} A^{T} & \operatorname{Nul} A \\
(\operatorname{Col} A)^{\perp}=\left(\operatorname{Row} A^{T}\right)^{\perp} & (\operatorname{Nul} A)^{\perp} \\
\operatorname{Col}\left(A^{T}\right)=\operatorname{Row}(A) & \operatorname{Nul}\left(A^{T}\right) \\
\left(\operatorname{Col}\left(A^{T}\right)\right)^{\perp}=(\operatorname{Row}(A))^{\perp} & \left(\operatorname{Nul}\left(A^{T}\right)\right)^{\perp}
\end{array}
$$

Let the column vectors of $A$ be $\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \ldots, \overrightarrow{a_{m}}\right\}$. Then a vector $\vec{x}$ is in $(\operatorname{Col} A)^{\perp}$ if and only if $\vec{x} \cdot \overrightarrow{a_{j}}=0$ for $1 \leq j \leq m$. Rewriting this as a system of equations we have:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2} \ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2} \ldots+a_{1 n} x_{n}=0 \\
\cdot \\
\cdot \\
a_{n 1} x_{1}+a_{n 2} x_{2} \ldots+a_{m n} x_{n}=0
\end{gathered}
$$

Rewriting the system as a matrix equation we have:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\overrightarrow{0} \Leftrightarrow A^{T} \vec{x}=\overrightarrow{0}
$$

So, any vector $\vec{x}$ is in $(\operatorname{Col} A)^{\perp}$ if and only if $\vec{x} \in \operatorname{Nul}\left(A^{T}\right)$. Since no special assumptions were made about $A$ we can conclude that:

$$
\begin{aligned}
& (\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right) \\
& \left(\operatorname{Col} A^{T}\right)^{\perp}=\operatorname{Nul}(A)
\end{aligned}
$$

Also notice by these identities that:

$$
\begin{gathered}
\left(\operatorname{Nul} A^{T}\right)^{\perp}=\left((\operatorname{Col} A)^{\perp}\right)^{\perp}=\operatorname{Col} A \\
(\operatorname{Nul} A)^{\perp}=\left(\left(\operatorname{Col} A^{T}\right)^{\perp}\right)^{\perp}=\operatorname{Col} A^{T}
\end{gathered}
$$

Substituting these identities into our shortened list and eliminating identical entries we have:

$$
\begin{aligned}
& \operatorname{Col} A=\operatorname{Row} A^{T}=\left(\operatorname{Nul} A^{T}\right)^{\perp} \\
& \operatorname{Nul} A^{T}=(\operatorname{Col} A)^{\perp}=\left(\operatorname{Row} A^{T}\right)^{\perp} \\
& \operatorname{Col}\left(A^{T}\right)=\operatorname{Row}(A)=(\operatorname{Nul} A)^{\perp} \\
& \operatorname{Nul} A=\left(\operatorname{Col}\left(A^{T}\right)\right)^{\perp}=(\operatorname{Row}(A))^{\perp}
\end{aligned}
$$

By inspection one finds that for the matrix $Q=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0\end{array}\right)$, the four vector spaces on our list are in fact distinct. So we conclude that for some matrix $A$ there can be as many as four
distinct subspaces of those on the original list and there are at most four distinct subspaces contained on the original list.
When $m=n$ it is possible that $A=A^{T}$ as in the case of $I_{n}$. In these cases $\operatorname{Col} A=\operatorname{Col}\left(A^{T}\right)$, and $\operatorname{Nul} A^{T}=\operatorname{Nul} A$, reducing the number of distinct vector spaces from the list to 2 . So we conclude that there can be as few as 2 distinct vector spaces contained on the original list.

We now prove by contradiction that for a vector space $W$ in $\mathbb{R}^{n}, W \neq W^{\perp}$.
Proof. Suppose there exists a vector space $W$ in $\mathbb{R}^{n}$ such that $W=W^{\perp}$. Then every vector in $W$ is orthogonal to itself. By the definition of orthogonality and a property of the dot product ( $\vec{u} \cdot \vec{u}=\overrightarrow{0}$ if and only if $\vec{u}=0$ ), the only vector orthogonal to itself is $\overrightarrow{0}$. This implies $W=\overrightarrow{0}$. Since every vector in $R^{n}$ is orthogonal to $\overrightarrow{0}$, we have $W^{\perp}=\mathbb{R}^{n}$. By our assumption this gives $\mathbb{R}^{n}=\overrightarrow{0}$ which is clearly not true. So we conclude by way of contradiction that for any vector space in $\mathbb{R}^{n}, W \neq W^{\perp}$.

Since the original list contains the orthogonal complement of each vector space on the list, we conclude that there are at least two distinct vector spaces on the list.

## 2

Let $n \in \mathbb{N}$. In this problem below we consider the reverse identity matrix, $J_{n}$.

$$
J_{1}=[1], J_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], J_{3}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \cdots, J_{n}=\left[\begin{array}{cccc}
0 & \cdots & 0 & 1 \\
0 & \cdots & 1 & 0 \\
\vdots & . & \vdots & \vdots \\
1 & \cdots & 0 & 0
\end{array}\right]
$$

Let $0_{n}$ be an $n \times n$ matrix with all zeros for entries. Then for even $n$, $J_{n}$ can be represented in the form of a block matrix as follows: $J_{n}=\left(\begin{array}{cc}0 \frac{n}{2} & J_{\frac{n}{2}}^{2} \\ J_{\frac{n}{2}} & 0 \frac{n}{2}\end{array}\right)$. Let $P_{n}=\left(\begin{array}{cc}I_{\frac{n}{2}} & J_{\frac{n}{2}} \\ J_{\frac{n}{2}} & (-1) I_{\frac{n}{2}}\end{array}\right)$ and $D_{n}=$ $\left(\begin{array}{cc}I_{\frac{n}{2}} & 0 \frac{n}{2} \\ 0_{\frac{n}{2}} & (-1) I_{\frac{n}{2}}\end{array}\right)$. Notice that $J_{n} J_{n}=I_{n}$. So we have the following results:

$$
\begin{align*}
& \text { (1) } J_{n} P_{n}=\left[\begin{array}{ll}
0_{\frac{n}{2}} & J_{\frac{n}{2}} \\
J_{\frac{n}{2}} & 0 \frac{n}{2}
\end{array}\right]\left[\begin{array}{cc}
I_{\frac{n}{2}} & J_{\frac{n}{2}} \\
J_{\frac{n}{2}} & (-1) I_{\frac{n}{2}}
\end{array}\right]=\left[\begin{array}{cc}
J_{\frac{n}{2}} J_{\frac{n}{2}} & J_{\frac{n}{2}}(-1) I_{\frac{n}{2}} \\
J_{\frac{n}{2}} I_{\frac{n}{2}}^{2} & J_{\frac{n}{2}} J_{\frac{n}{2}}
\end{array}\right]=\left[\begin{array}{cc}
I_{\frac{n}{2}} & (-1) J_{\frac{n}{2}} \\
J_{\frac{n}{2}} & I_{\frac{n}{2}}
\end{array}\right] \\
& P_{n} D_{n}=\left[\begin{array}{cc}
I_{\frac{n}{2}} & J_{\frac{n}{2}} \\
J_{\frac{n}{2}} & (-1) I_{\frac{n}{2}}
\end{array}\right]\left[\begin{array}{cc}
I_{\frac{n}{2}}^{2} & 0_{\frac{n}{2}} \\
0 \frac{n}{2} & (-1) I_{\frac{n}{2}}
\end{array}\right]=\left[\begin{array}{ccc}
I_{\frac{n}{2}} I_{\frac{n}{2}} & J_{\frac{n}{2}}(-1) I_{\frac{n}{2}} \\
I_{\frac{n}{2}} J_{\frac{n}{2}} & (-1) I_{\frac{n}{2}}(-1) I_{\frac{n}{2}}
\end{array}\right]=\left[\begin{array}{cc}
I_{\frac{n}{2}} & (-1) J_{\frac{n}{2}} \\
J_{\frac{n}{2}} & I_{\frac{n}{2}}
\end{array}\right] \tag{2}
\end{align*}
$$

By (1) and (2) we have $J_{n} P_{n}=P_{n} D_{n}$. Since $D_{n}$ is diagonal we now show that $P_{n}\left(\frac{1}{2} P_{n}\right)=I_{n}$, to prove that for even $n, J_{n}$ is diagonalizable.

$$
\frac{1}{2} P_{n} P_{n}=\frac{1}{2}\left[\begin{array}{cc}
I_{\frac{n}{2}} & J_{\frac{n}{2}} \\
J_{\frac{n}{2}} & (-1)^{\frac{n}{2}}
\end{array}\right]\left[\begin{array}{cc}
I_{\frac{n}{2}} & J_{\frac{n}{2}} \\
J_{\frac{n}{2}} & (-1)^{\frac{n}{2}}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
\left(I_{\frac{n}{2}}^{2}+J_{\frac{n}{2}}^{2}\right) & \left(I_{\frac{n}{2}} J_{\frac{n}{2}}-I_{\frac{n}{2}} J_{\frac{n}{2}}\right) \\
\left(J_{\frac{n}{2}}^{2}-I_{\frac{n}{2}}^{2}\right) & \left(J_{\frac{n}{2}}^{2}+I_{\frac{n}{2}}^{2}\right)
\end{array}\right]=I_{n}
$$

For a non-square $n \times m$ matrix containing all zeros as entries we introduce the notation $0_{n \times m}$. For square matrices containing all zeros as entries we maintain our earlier convention. This allows us to represent $J_{n}$ where $n$ is odd and $n>1$, as the block matrix displayed below. Furthermore, let the matrices $Q_{n}, V_{n}$ be as follows:
$J_{n}=\left[\begin{array}{ccc}0_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & J_{\frac{n-1}{2}} \\ 0_{1 \times \frac{n-1}{2}} & 1 & 0_{1 \times \frac{n-1}{2}} \\ J_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & 0_{\frac{n-1}{2}}\end{array}\right], Q_{n}=\left[\begin{array}{ccc}I_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & J_{\frac{n-1}{2}} \\ 0_{1 \times \frac{n-1}{2}} & 1 & 0_{1 \times \frac{n-1}{2}} \\ J_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & (-1) I_{\frac{n-1}{2}}\end{array}\right] V_{n}=\left[\begin{array}{ccc}I_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & 0_{\frac{n-1}{2}} \\ 0_{1 \times \frac{n-1}{2}} & 1 & 0_{1 \times \frac{n-1}{2}} \\ 0_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & (-1) I_{\frac{n-1}{2}}\end{array}\right]$
Since $J_{n}, Q_{n}$, and $V_{n}$ are conformable for block multiplication, for the sake of space we shall ignore subscripts defining block size in demonstration of the matrix products we are interested in. We have:

$$
\begin{gather*}
J_{n} Q_{n}=\left[\begin{array}{lll}
0 & 0 & J \\
0 & 1 & 0 \\
J & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
I & 0 & J \\
0 & 1 & 0 \\
J & 0 & -I
\end{array}\right]=\left[\begin{array}{ccc}
J^{2} & 0 & -I J \\
0 & 1 & 0 \\
J I & 0 & J^{2}
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & -J \\
0 & 1 & 0 \\
J & 0 & I
\end{array}\right]  \tag{1}\\
Q_{n} V_{n}=\left[\begin{array}{ccc}
I & 0 & J \\
0 & 1 & 0 \\
J & 0 & -I
\end{array}\right]\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -I
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & J(-I) \\
0 & 1 & 0 \\
J & 0 & -I(-I)
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & -J \\
0 & 1 & 0 \\
J & 0 & I
\end{array}\right]
\end{gather*}
$$

By (1) and (2) we have $J_{n} Q_{n}=Q_{n} V_{n}$. Since $V_{n}$ is a diagonal matrix we now demonstrate that $Q_{n}$ is invertible to complete the proof that $J_{n}$ is diagonalizable for odd $n$ ( $n=1$ is trivial since $J_{1}$ is a diagonal matrix). Let

$$
Z_{n}=\frac{1}{2}\left[\begin{array}{ccc}
I_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & J_{\frac{n-1}{2}} \\
0_{1 \times \frac{n-1}{2}} & 2 & 0_{1 \times \frac{n-1}{2}} \\
J_{\frac{n-1}{2}} & 0_{\frac{n-1}{2} \times 1} & (-1) I_{\frac{n-1}{2}}
\end{array}\right]
$$

Then:

$$
Q_{n} Z_{n}=\left[\begin{array}{ccc}
I & 0 & J \\
0 & 1 & 0 \\
J & 0 & -I
\end{array}\right] \frac{1}{2}\left[\begin{array}{ccc}
I & 0 & J \\
0 & 2 & 0 \\
J & 0 & -I
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
I^{2}+J^{2} & 0 & I J+J(-I) \\
0 & 2 & 0 \\
J I+(-I J) & 0 & J^{2}+(-I)(-I)
\end{array}\right]=I_{n}
$$

Since $J_{n}$ is diagonalizable for all even $n$ and all odd $n, J_{n}$ is diagonalizable for all $n$.

In this problem we consider three kinds of $n \times n$ matrices:

$$
L_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right], \quad U_{n}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right], \quad M_{n}=\left[\begin{array}{ccccc}
n & n-1 & \cdots & 2 & 1 \\
n-1 & n-1 & \cdots & 2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
2 & 2 & \cdots & 2 & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right] .
$$

1. There is a simple relationship among matrices $L_{n}, U_{n}$ and $M_{n}$. By matrix multiplication we calculate (1) $U_{n} L_{n}=M n$.

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right]=\left[\begin{array}{ccccc}
n & n-1 & \cdots & 2 & 1 \\
n-1 & n-1 & \cdots & 2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
2 & 2 & \cdots & 2 & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

2. Since $L_{n}$ and $U_{n}$ are triangular matrices it is easy to calculate their determinants.

$$
\begin{aligned}
& \operatorname{det}\left(L_{n}\right)=1 \cdot 1 \cdot \ldots . . \cdot 1=1 \\
& \operatorname{det}\left(U_{n}\right)=1 \cdot 1 \cdot \ldots \ldots \cdot 1=1
\end{aligned}
$$

By (1) we have $\operatorname{det}\left(M_{n}\right)=\operatorname{det}\left(U_{n} L_{n}\right)=\operatorname{det}\left(U_{n}\right) \operatorname{det}\left(L_{n}\right)=1$.
3.

$$
\begin{gathered}
U_{n}^{-1}=\left[\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right], \quad L_{n}^{-1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & -1 & 1
\end{array}\right] \\
{\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & -1 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]=\left[\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
0 & 0 & \cdots & -1 & 2
\end{array}\right]}
\end{gathered}
$$

Prove that $\operatorname{Col}\left(A^{T}\right)=\operatorname{Col}\left(A^{T} A\right)$.
Proof. First we show that $\operatorname{Nul}(A)=\operatorname{Nul} A^{T} A$. For $\vec{x} \in \operatorname{Nul}(A), A \vec{x}=\overrightarrow{0}$. Right multiplying both sides by $A^{T}$ gives $A^{T} A \vec{x}=\overrightarrow{0}$. So, (1) if $\vec{x} \in \operatorname{Nul}(A)$ then $\vec{x} \in \operatorname{Nul}\left(A^{T} A\right)$.
For $\vec{x} \in \operatorname{Nul}\left(A^{T} A\right), A^{T} A \vec{x}=\overrightarrow{0}$. We have:
$A^{T} A \vec{x}=\overrightarrow{0} \Leftrightarrow \vec{x}^{T} A^{T} A \vec{x}=\overrightarrow{0} \Leftrightarrow(A \vec{x})^{T} A \vec{x}=\overrightarrow{0} \Leftrightarrow A \vec{x} \cdot A \vec{x}=\overrightarrow{0} \Leftrightarrow\|A \vec{x}\|^{2}=\overrightarrow{0} \Leftrightarrow\|A \vec{x}\|=\overrightarrow{0} \Leftrightarrow A \vec{x}=\overrightarrow{0}$
So, (2) if $\vec{x} \in \operatorname{Nul}\left(A^{T} A\right)$ then $\vec{x} \in \operatorname{Nul}(A)$. By (1) and (2) we have (3) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$. From (3) and the identities established in section 1 we have the following result:

$$
\operatorname{Col}\left(A^{T}\right)=(\operatorname{Nul}(A))^{\perp}=\left(\operatorname{Nul}\left(A^{T} A\right)\right)^{\perp}=\operatorname{Col}\left(A^{T} A\right)^{T}=\operatorname{Col}\left(A^{T} A\right) .
$$

By the above result, the fact $A^{T} A=\left(A^{T} A\right)^{T}$, and our previously established identities we now have these useful identities:

$$
\operatorname{Col}\left(A^{T}\right)=\operatorname{Row}(A)=(\operatorname{Nul} A)^{\perp}=\operatorname{Col}\left(A^{T} A\right)=\operatorname{Row}\left(A^{T} A\right) .
$$

